2,211 research outputs found

    Local heuristics and the emergence of spanning subgraphs in complex networks

    Get PDF
    We study the use of local heuristics to determine spanning subgraphs for use in the dissemination of information in complex networks. We introduce two different heuristics and analyze their behavior in giving rise to spanning subgraphs that perform well in terms of allowing every node of the network to be reached, of requiring relatively few messages and small node bandwidth for information dissemination, and also of stretching paths with respect to the underlying network only modestly. We contribute a detailed mathematical analysis of one of the heuristics and provide extensive simulation results on random graphs for both of them. These results indicate that, within certain limits, spanning subgraphs are indeed expected to emerge that perform well in respect to all requirements. We also discuss the spanning subgraphs' inherent resilience to failures and adaptability to topological changes

    Probabilistic heuristics for disseminating information in networks

    Get PDF
    We study the problem of disseminating a piece of information through all the nodes of a network, given that it is known originally only to a single node. In the absence of any structural knowledge on the network other than the nodes' neighborhoods, this problem is traditionally solved by flooding all the network's edges. We analyze a recently introduced probabilistic algorithm for flooding and give an alternative probabilistic heuristic that can lead to some cost-effective improvements, like better trade-offs between the message and time complexities involved. We analyze the two algorithms both mathematically and by means of simulations, always within a random-graph framework and considering relevant node-degree distributions

    Nonmonotonic External Field Dependence of the Magnetization in a Finite Ising Model: Theory and MC Simulation

    Full text link
    Using ϕ4\phi^4 field theory and Monte Carlo (MC) simulation we investigate the finite-size effects of the magnetization MM for the three-dimensional Ising model in a finite cubic geometry with periodic boundary conditions. The field theory with infinite cutoff gives a scaling form of the equation of state h/Mδ=f(hLβδ/ν,t/h1/βδ)h/M^\delta = f(hL^{\beta\delta/\nu}, t/h^{1/\beta\delta}) where t=(T−Tc)/Tct=(T-T_c)/T_c is the reduced temperature, hh is the external field and LL is the size of system. Below TcT_c and at TcT_c the theory predicts a nonmonotonic dependence of f(x,y)f(x,y) with respect to x≡hLβδ/νx \equiv hL^{\beta\delta/\nu} at fixed y≡t/h1/βδy \equiv t/h^{1/\beta \delta} and a crossover from nonmonotonic to monotonic behaviour when yy is further increased. These results are confirmed by MC simulation. The scaling function f(x,y)f(x,y) obtained from the field theory is in good quantitative agreement with the finite-size MC data. Good agreement is also found for the bulk value f(∞,0)f(\infty,0) at TcT_c.Comment: LaTex, 12 page

    Percolation transition in networks with degree-degree correlation

    Full text link
    We introduce an exponential random graph model for networks with a fixed degree distribution and with a tunable degree-degree correlation. We then investigate the nature of a percolation transition in the correlated network with the Poisson degree distribution. It is found that negative correlation is irrelevant in that the percolation transition in the disassortative network belongs to the same universality class of the uncorrelated network. Positive correlation turns out to be relevant. The percolation transition in the assortative network is characterized by the non-diverging mean size of finite clusters and power-law scalings of the density of the largest cluster and the cluster size distribution in the non-percolating phase as well as at the critical point. Our results suggest that the unusual type percolation transition in the growing network models reported recently may be inherited from the assortative degree-degree correlation.Comment: 7 pages, 11 figur

    Number of spanning clusters at the high-dimensional percolation thresholds

    Full text link
    A scaling theory is used to derive the dependence of the average number of spanning clusters at threshold on the lattice size L. This number should become independent of L for dimensions d<6, and vary as log L at d=6. The predictions for d>6 depend on the boundary conditions, and the results there may vary between L^{d-6} and L^0. While simulations in six dimensions are consistent with this prediction (after including corrections of order loglog L), in five dimensions the average number of spanning clusters still increases as log L even up to L = 201. However, the histogram P(k) of the spanning cluster multiplicity does scale as a function of kX(L), with X(L)=1+const/L, indicating that for sufficiently large L the average will approach a finite value: a fit of the 5D multiplicity data with a constant plus a simple linear correction to scaling reproduces the data very well. Numerical simulations for d>6 and for d=4 are also presented.Comment: 8 pages, 11 figures. Final version to appear on Physical Review

    Colloids with key-lock interactions: non-exponential relaxation, aging and anomalous diffusion

    Full text link
    The dynamics of particles interacting by key-lock binding of attached biomolecules are studied theoretically. Experimental realizations of such systems include colloids grafted with complementary single-stranded DNA (ssDNA), and particles grafted with antibodies to cell-membrane proteins. Depending on the coverage of the functional groups, we predict two distinct regimes. In the low coverage localized regime, there is an exponential distribution of departure times. As the coverage is increased the system enters a diffusive regime resulting from the interplay of particle desorption and diffusion. This interplay leads to much longer bound state lifetimes, a phenomenon qualitatively similar to aging in glassy systems. The diffusion behavior is analogous to dispersive transport in disordered semiconductors: depending on the interaction parameters it may range from a finite renormalization of the diffusion coefficient to anomalous, subdiffusive behavior. We make connections to recent experiments and discuss the implications for future studies.Comment: v2: substantially revised version, new treatment of localized regime, 19 pages, 10 figure

    Model for Anisotropic Directed Percolation

    Full text link
    We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio μ\mu between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of μ\mu. This result suggests that Sinai's theorem proposed originally for isotropic percolation is also valid for anisotropic directed percolation problems. The new invariant also yields a constant fractal dimension Df∼1.71D_{f} \sim 1.71 for all μ\mu, which is the same value found in isotropic directed percolation (i.e., μ=1\mu = 1).Comment: RevTeX, 9 pages, 3 figures. To appear in Phys.Rev.

    Crossover transition in bag-like models

    Full text link
    We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consist of a finite number of infinitely extended bags, which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons.Comment: Corresponds to the published version. Added few references and changed the titl

    Distribution of averages in a correlated Gaussian medium as a tool for the estimation of the cluster distribution on size

    Full text link
    Calculation of the distribution of the average value of a Gaussian random field in a finite domain is carried out for different cases. The results of the calculation demonstrate a strong dependence of the width of the distribution on the spatial correlations of the field. Comparison with the simulation results for the distribution of the size of the cluster indicates that the distribution of an average field could serve as a useful tool for the estimation of the asymptotic behavior of the distribution of the size of the clusters for "deep" clusters where value of the field on each site is much greater than the rms disorder.Comment: 15 pages, 6 figures, RevTe

    Predicting Failure using Conditioning on Damage History: Demonstration on Percolation and Hierarchical Fiber Bundles

    Full text link
    We formulate the problem of probabilistic predictions of global failure in the simplest possible model based on site percolation and on one of the simplest model of time-dependent rupture, a hierarchical fiber bundle model. We show that conditioning the predictions on the knowledge of the current degree of damage (occupancy density pp or number and size of cracks) and on some information on the largest cluster improves significantly the prediction accuracy, in particular by allowing to identify those realizations which have anomalously low or large clusters (cracks). We quantify the prediction gains using two measures, the relative specific information gain (which is the variation of entropy obtained by adding new information) and the root-mean-square of the prediction errors over a large ensemble of realizations. The bulk of our simulations have been obtained with the two-dimensional site percolation model on a lattice of size L×L=20×20L \times L=20 \times 20 and hold true for other lattice sizes. For the hierarchical fiber bundle model, conditioning the measures of damage on the information of the location and size of the largest crack extends significantly the critical region and the prediction skills. These examples illustrate how on-going damage can be used as a revelation of both the realization-dependent pre-existing heterogeneity and the damage scenario undertaken by each specific sample.Comment: 7 pages + 11 figure
    • …
    corecore