264 research outputs found

    Nanotransfer Printing of Organic and Carbon Nanotube Thin-Film Transistors on Plastic Substrates

    Full text link
    A printing process for high-resolution transfer of all components for organic electronic devices on plastic substrates has been developed and demonstrated for pentacene (Pn), poly (3-hexylthiophene) and carbon nanotube (CNT) thin-film transistors (TFTs). The nanotransfer printing process allows fabrication of an entire device without exposing any component to incompatible processes and with reduced need for special chemical preparation of transfer or device substrates. Devices on plastic substrates include a Pn TFT with a saturation, field-effect mobility of 0.09 cm^2 (Vs)^-1 and on/off ratio approximately 10^4 and a CNT TFT which exhibits ambipolar behavior and no hysteresis.Comment: to appear in Applied Physics Letter

    Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach.

    Get PDF
    Olfactory ensheathing cells (OECs) are neural crest-derived glia that ensheath bundles of olfactory axons from their peripheral origins in the olfactory epithelium to their central targets in the olfactory bulb. We took an unbiased laser microdissection and differential RNA-seq approach, validated by in situ hybridization, to identify candidate molecular mechanisms underlying mouse OEC development and differences with the neural crest-derived Schwann cells developing on other peripheral nerves. We identified 25 novel markers for developing OECs in the olfactory mucosa and/or the olfactory nerve layer surrounding the olfactory bulb, of which 15 were OEC-specific (that is, not expressed by Schwann cells). One pan-OEC-specific gene, Ptprz1, encodes a receptor-like tyrosine phosphatase that blocks oligodendrocyte differentiation. Mutant analysis suggests Ptprz1 may also act as a brake on OEC differentiation, and that its loss disrupts olfactory axon targeting. Overall, our results provide new insights into OEC development and the diversification of neural crest-derived glia.Cambridge Commonwealth Trust Cambridge Philosophical Societ

    Genetic Background Strongly Modifies the Severity of Symptoms of Hirschsprung Disease, but Not Hearing Loss in Rats Carrying Ednrbsl Mutations

    Get PDF
    Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrbsl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome

    Comparative Oncogenomics Implicates the Neurofibromin 1 Gene (NF1) as a Breast Cancer Driver

    Get PDF
    Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations

    Interfacility Helicopter Ambulance Transport of Neurosurgical Patients: Observations, Utilization, and Outcomes from a Quaternary Level Care Hospital

    Get PDF
    The clinical benefit of helicopter transport over ground transportation for interfacility transport is unproven. We sought to determine actual practice patterns, utilization, and outcomes of patients undergoing interfacility transport for neurosurgical conditions.We retrospectively examined all interfacility helicopter transfers to a single trauma center during 2008. We restricted our analysis to those transfers leading either to admission to the neurosurgical service or to formal consultation upon arrival. Major exclusion criteria included transport from the scene, death during transport, and transport to any area of the hospital other than the emergency department. The primary outcome was time interval to invasive intervention. Secondary outcomes were estimated ground transportation times from the referring hospital, admitting disposition, and discharge disposition. Of 526 candidate interfacility helicopter transfers to our emergency department in 2008, we identified 167 meeting study criteria. Seventy-five (45%) of these patients underwent neurosurgical intervention. The median time to neurosurgical intervention ranged from 1.0 to 117.8 hours, varying depending on the diagnosis. For 101 (60%) of the patients, estimated driving time from the referring institution was less than one hour. Four patients (2%) expired in the emergency department, and 34 patients (20%) were admitted to a non-ICU setting. Six patients were discharged home within 24 hours. For those admitted, in-hospital mortality was 28%.Many patients undergoing interfacility transfer for neurosurgical evaluation are inappropriately triaged to helicopter transport, as evidenced by actual times to intervention at the accepting institution and estimated ground transportation times from the referring institution. In a time when there is growing interest in health care cost containment, practitioners must exercise discretion in the selection of patients for air ambulance transport--particularly when it may not bear influence on clinical outcome. Neurosurgical evaluation via telemedicine may be one strategy for improving air transport triage
    corecore