27 research outputs found

    Vector Lyapunov functions and stability analysis of nonlinear systems

    No full text

    Dynamic systems on measure chains

    No full text

    Concise row-pruning algorithm to invert a matrix

    No full text
    Presented here, in a vector formulation, is an O(mn2) direct concise algorithm that prunes/identifies the linearly dependent (ld) rows of an arbitrary m X n matrix A and computes its reflexive type minimum norm inverse A(mr)-, which will be the true inverse A-1 if A is nonsingular and the Moore-Penrose inverse A+ if A is full row-rank. The algorithm, without any additional computation, produces the projection operator P = (I - A(mr)- A) that provides a means to compute any of the solutions of the consistent linear equation Ax = b since the general solution may be expressed as x = A(mr)+b + Pz, where z is an arbitrary vector. The rank r of A will also be produced in the process. Some of the salient features of this algorithm are that (i) the algorithm is concise, (ii) the minimum norm least squares solution for consistent/inconsistent equations is readily computable when A is full row-rank (else, a minimum norm solution for consistent equations is obtainable), (iii) the algorithm identifies ld rows, if any, and reduces concerned computation and improves accuracy of the result, (iv) error-bounds for the inverse as well as the solution x for Ax = b are readily computable, (v) error-free computation of the inverse, solution vector, rank, and projection operator and its inherent parallel implementation are straightforward, (vi) it is suitable for vector (pipeline) machines, and (vii) the inverse produced by the algorithm can be used to solve under-/overdetermined linear systems

    Stabilizing trench's algorithm to invert symmetric toeplitz matrices

    No full text
    Presented here is a stable algorithm that uses Zohar's formulation of Trench's algorithm and computes the inverse of a symmetric Toeplitz matrix including those with vanishing or nearvanishing leading minors. The algorithm is based on a diagonal modification of the matrix, and exploits symmetry and persymmetry properties of the inverse matrix

    Solving linear programming problems exactly

    No full text
    A linear programming problem in an inequality form having a bounded solution is solved error-free using an algorithm that sorts the inequalities, removes the redundant ones, and uses the p-adic arithmetic. (C) Elsevier Science Inc., 199
    corecore