103 research outputs found

    Age- and caste-independent piRNAs in the germline and miRNA profiles linked to caste and fecundity in the ant Temnothorax rugatulus

    Get PDF
    Social insects are models for studies of phenotypic plasticity. Ant queens and workers vary in fecundity and lifespan, which are enhanced and extended in queens. Yet, the regulatory mechanisms underlying this variation are not well understood. Ant queens live and reproduce for years, so that they need to protect their germline from transposable element (TE) activity, which may be redundant in short-lived, often sterile workers. We analysed the expression of two protective classes of small RNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in various tissues, castes and age classes of the ant Temnothorax rugatulus. In queens, piRNAs were highly abundant in ovaries with TEs being their clear targets, with reduced but still detectable piRNA-specific ping-pong signatures in thorax and brains. piRNA pathway activity varied little with age in queens. Moreover, the reduced ovaries of workers also exhibited similar piRNA activity and this not only in young, fertile workers, but also in older foragers with regressed ovaries. Therefore, these ants protect their germline through piRNA activity, regardless of ovarian development, age or caste, even in sterile workers often considered the soma of the superorganism. Our tissue-specific miRNA analysis detected the expression of 304 miRNAs, of which 105 were expressed in all tissues, 10 enriched in the brain, three in the thorax, whereas 83 were ovarian-specific. We identified ovarian miRNAs whose expression was related to caste, fecundity and age, and which likely regulate group-specific gene expression. sRNA shifts in young- to middle-aged queens were minor, suggesting delayed senescence in this reproductive caste

    Canadian Guidelines for Controlled Pediatric Donation After Circulatory Determination of Death-Summary Report

    Get PDF
    OBJECTIVES: Create trustworthy, rigorous, national clinical practice guidelines for the practice of pediatric donation after circulatory determination of death in Canada. METHODS: We followed a process of clinical practice guideline development based on World Health Organization and Canadian Medical Association methods. This included application of Grading of Recommendations Assessment, Development, and Evaluation methodology. Questions requiring recommendations were generated based on 1) 2006 Canadian donation after circulatory determination of death guidelines (not pediatric specific), 2) a multidisciplinary symposium of national and international pediatric donation after circulatory determination of death leaders, and 3) a scoping review of the pediatric donation after circulatory determination of death literature. Input from these sources drove drafting of actionable questions and Good Practice Statements, as defined by the Grading of Recommendations Assessment, Development, and Evaluation group. We performed additional literature reviews for all actionable questions. Evidence was assessed for quality using Grading of Recommendations Assessment, Development, and Evaluation and then formulated into evidence profiles that informed recommendations through the evidence-to-decision framework. Recommendations were revised through consensus among members of seven topic-specific working groups and finalized during meetings of working group leads and the planning committee. External review was provided by pediatric, critical care, and critical care nursing professional societies and patient partners. RESULTS: We generated 63 Good Practice Statements and seven Grading of Recommendations Assessment, Development, and Evaluation recommendations covering 1) ethics, consent, and withdrawal of life-sustaining therapy, 2) eligibility, 3) withdrawal of life-sustaining therapy practices, 4) ante and postmortem interventions, 5) death determination, 6) neonatal pediatric donation after circulatory determination of death, 7) cardiac and innovative pediatric donation after circulatory determination of death, and 8) implementation. For brevity, 48 Good Practice Statement and truncated justification are included in this summary report. The remaining recommendations, detailed methodology, full Grading of Recommendations Assessment, Development, and Evaluation tables, and expanded justifications are available in the full text report. CONCLUSIONS: This process showed that rigorous, transparent clinical practice guideline development is possible in the domain of pediatric deceased donation. Application of these recommendations will increase access to pediatric donation after circulatory determination of death across Canada and may serve as a model for future clinical practice guideline development in deceased donation
    corecore