21 research outputs found

    Heat transfer model for predicting squib ignition times

    Get PDF
    A squib ignition model based on transient heat condition from the hot bridgewire to the pyrotechnic is described. No Arrhenius-type chemical reaction is included. Instead, a thermal contact resistance is postulated to exist between the hot bridgewire and the pyrotechnic. Ignition is assumed to occur when a 2.5 micron layer of pyrotechnic next to the bridgewire reaches a characteristic ignition temperature for that pyrotechnic. This model was applied to the JPL squib, which uses a 50 micron (0.002-in.) diameter Tophet A bridgewire to ignite a boron, potassium perchlorate mix. A computer program was utilized that solves the transient heat condition problem with the boundary conditions stipulated by the model. The thermal contact conductance at the interface was determined by trial and error so that the experimentally determined ignition time for one firing condition would be properly predicted by the model. The agreement was quite good for tests run between -129 C and +93.3 C at current levels of 3.5 and 5 A. Axial heat conduction along the bridgewire is shown to be negligible

    Apparent reverse transition in an expansion fan

    No full text

    A Schlieren Interferometer Method for Heat Transfer Studies

    No full text

    Heat Transfer in Air Enclosures of Aspect Ratio Less than One

    No full text

    Role of Thermal Contact Resistance in Pyrotechnic Ignition

    No full text
    corecore