13 research outputs found

    Ocean Acidification at High Latitudes: Potential Effects on Functioning of the Antarctic Bivalve Laternula elliptica

    Get PDF
    Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO3) to generate shells or skeletons. Studies of potential effects of future levels of pCO2 on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO2 levels of their natural environment (430 µatm, pH 7.99; based on field measurements) with those predicted for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH 8.32). Adult L. elliptica basal metabolism (oxygen consumption rates) and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS), a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (ΩAr = 0.71), the CaCO3 polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months) that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios

    Mechanotransduction of hyaluronan synthases in bone marrow derived mesenchymal stem cells

    No full text

    Extended <em>in vitro</em> culture of primary human mesenchymal stem cells downregulates <em>Brca1</em>-related genes and impairs DNA double-strand break recognition.

    No full text
    Mesenchymal stem cells (MSCs) are multilineage adult stem cells with considerable potential for cell-based regenerative therapies. In vitro expansion changes their epigenetic and cellular properties, with a poorly understood impact on DNA damage response (DDR) and genome stability. We report here results of a transcriptome-based pathway analysis of in vitro-expanded human bone marrow-derived mesenchymal stem cell (hBM-MSCs), supplemented with cellular assays focusing on DNA double-strand break (DSB) repair. Gene pathways affected by in vitro aging were mapped using gene ontology, KEGG, and GSEA, and were found to involve DNA repair, homologous recombination (HR), cell cycle control, and chromosomal replication. Assays for the recognition (gamma-H2AX + 53BP1 foci) and repair (pBRCA1 + gamma-H2AX foci) of X-ray-induced DNA DSBs in hBM-MSCs show that over a period of 8 weeks of in vitro aging (i.e., about 10 doubling times), cells exhibit a reduced DDR and a higher fraction of residual DNA damage. Furthermore, a distinct subpopulation of cells with impaired DNA DSB recognition was observed. Several genes that participate in DNA repair by HR (e.g., Rad51, Rad54, BRCA1) show a 2.3- to fourfold reduction of their mRNA expression by qRT-PCR. We conclude that the in vitro expansion of hMSCs can lead to aging-related impairment of the recognition and repair of DNA breaks
    corecore