197 research outputs found

    Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells

    Get PDF
    Background: Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. Results: We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1x10-6 trypsin units per cell. 1 L bioreactor cultivations showed that 4x106 cells/mL can be infected without a cell density effect achieving titers of 1x108 virions/mL after 24 h. Conclusions: Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required. © 2012 Lohr et al.; licensee BioMed Central Ltd. [accessed 2013 November 18th

    Process optimization for semi-continuous virus production at high cell densities

    Get PDF
    Background. Unlike production of recombinant proteins, continuous production of viral vaccines at high cell densities (HCD) is still constrained by host cell lysis during virus propagation and limited virus recovery from culture broth. Nevertheless, advanced fed-batch [1] and perfusion strategies can be applied to achieve a high-yield virus production processes. In this study, the development of a high-yield semi-continuous process for the production and purification of the modified vaccinia Ankara virus isolate MVA-CR19 and influenza A/PR/8 in HCD cultivations of the suspension cell line AGE1.CR.pIX (ProBioGen AG, Berlin) is presented. Methods. Depending on the required scale, high cell concentrations (~ 50×106 cell mL-1) were achieved either through medium renewal by periodic centrifugation (semi-perfusion) in 50 mL cultivations or using an alternating tangential flow (ATF) perfusion system for 1 L bioreactors. Process development and optimization comprised three phases: 1) assessment of different fed-batch and medium exchange strategies for the propagation of MVA-CR19 or influenza A/PR/8 viruses in 50 mL cultivations; 2) scale-up and process optimization of the high-yield process strategy to a 1 L bioreactor with the ATF system, and 3) integration of a purification process step using magnetic sulfated cellulose particles (MSCP). For both viruses, conventional batch cultivation (no addition/medium exchange after infection) was compared with processes applying fed-batch, periodic medium exchange and the combination of both during virus propagation. Results. Perfusion and semi-perfusion at a feeding rate of 0.05 nL/cell×d was suitable to propagate AGE1.CR.pIX cells above 60×106 cells/mL with neither limitation nor overload of nutrients. For infections in 50 mL, the application of a combined strategy comprising an initial fed-batch phase followed by a periodic virus harvest phase resulted in the highest product yield with a more than 10-fold increase, compared to the conventional batch processes at 4 to 8×106 cell/mL [2]. Additionally, a 3-fold increase in both cell-specific yield (virus/cell) and volumetric productivity (virus/L×d) could be obtained. Although product harvesting was suboptimal when up-scaling to a 1 L bioreactor with ATF-system, comparable increases in virus yields and productivity with respect to the conventional batch process were observed. In all cases, cell-specific yields and volumetric productivities reached their peak values at the peak virus concentrations, indicating that the process should be stopped at that time point. Eventually, selection of the optimal pore size of the membrane of the ATF-system allowed semi-continuous harvesting of the produced viruses and its purification with MSCPs with a recovery of about 50%. Conclusion. Compared to conventional batch processes, the developed HCD process offers significantly higher productivities including the option to integrate a purification step in a semi-continuous mode. Overall, the results show that there is a great potential for semi-continuous HCD processes for the production of viral vaccines in larger scales, which could intensify the discussion towards the establishment of true continuous production process

    Producing viruses in orbit: Current developments for orbital shaken viral vaccine manufacturing

    Get PDF
    Preculture of suspension cells is successfully performed in shake flasks. Especially newly developed designer cells are passaged up to 100 times in shake flaks at high shaking frequency and are then perfectly adapted to growth in a CO2 incubator with pH control and maximum oxygen supply (typically above 80% pO2). When they are subsequently transferred to stirred tank bioreactors for scaling up, specific cell growth rates are often lower and cells become sensitive to pH control via acid/base addition and shear stress due to submers gassing (bubbles). This was also seen for avian AGE1.CR.pIX and human HEK 293 cells. To avoid these problems, scale up in shaken mode was evaluated. Here we present the latest developments of the SB10-X OSB bioreactor with regard to bag design and improvement of the control unit. A new control strategy was introduced leading to a faster and more precise pH and DO control. Furthermore, the perfusion bag was optimized, so that on TFF or two ATF systems can be easily connected. Both developments have led to a more robust SB10-X system that allows to easily perform batch, fed batch or perfusion runs. Please click Download on the upper right corner to see the full abstract
    corecore