693 research outputs found
Interactions of the magnetospheres of stars and close-in giant planets
Since the first discovery of an extrasolar planetary system more than a
decade ago, hundreds more have been discovered. Surprisingly, many of these
systems harbor Jupiter-class gas giants located close to the central star, at
distances of 0.1 AU or less. Observations of chromospheric 'hot spots' that
rotate in phase with the planetary orbit, and elevated stellar X-ray
luminosities,suggest that these close-in planets significantly affect the
structure of the outer atmosphere of the star through interactions between the
stellar magnetic field and the planetary magnetosphere. Here we carry out the
first detailed three-dimensional MagnetoHydroHynamics (MHD) simulation
containing the two magnetic bodies and explore the consequences of such
interactions on the steady-state coronal structure. The simulations reproduce
the observable features of 1) increase in the total X-ray luminosity, 2)
appearance of coronal hot spots, and 3) phase shift of these spots with respect
to the direction of the planet. The proximate cause of these is an increase in
the density of coronal plasma in the direction of the planet, which prevents
the corona from expanding and leaking away this plasma via a stellar wind. The
simulations produce significant low temperature heating. By including dynamical
effects, such as the planetary orbital motion, the simulation should better
reproduce the observed coronal heating
The supercluster--void network III. The correlation function as a geometrical statistic
We investigate properties of the correlation function of clusters of galaxies
using geometrical models. On small scales the correlation function depends on
the shape and the size of superclusters. On large scales it describes the
geometry of the distribution of superclusters. If superclusters are distributed
randomly then the correlation function on large scales is featureless. If
superclusters and voids have a tendency to form a regular lattice then the
correlation function on large scales has quasi-regularly spaced maxima and
minima of decaying amplitude; i.e., it is oscillating. The period of
oscillations is equal to the step size of the grid of the lattice.
We calculate the power spectrum for our models and compare the geometrical
information of the correlation function with other statistics. We find that
geometric properties (the regularity of the distribution of clusters on large
scales) are better quantified by the correlation function. We also analyse
errors in the correlation function and the power spectrum by generating random
realizations of models and finding the scatter of these realizations.Comment: MNRAS LaTex style, 12 pages, 7 PostScript figures embedded, accepted
by MNRA
Variability of surface flows on the Sun and the implications for exoplanet detection
The published Mount Wilson Doppler-shift measurements of the solar velocity
field taken in 1967--1982 are revisited with a more accurate model, which
includes two terms representing the meridional flow and three terms
corresponding to the convective limb shift. Integration of the recomputed data
over the visible hemisphere reveals significant variability of the net radial
velocity at characteristic time scales of 0.1--10 years, with a standard
deviation of 1.4 \ms. This result is supported by independent published
observations. The implications for exoplanet detection include reduced
sensitivity of the Doppler method to Earth-like planets in the habitable zone,
and an elevated probability of false detections at periods of a few to several
years.Comment: Accepted in this form for publication in Ap
Cool Stars and Space Weather
Stellar flares, winds and coronal mass ejections form the space weather. They
are signatures of the magnetic activity of cool stars and, since activity
varies with age, mass and rotation, the space weather that extra-solar planets
experience can be very different from the one encountered by the solar system
planets. How do stellar activity and magnetism influence the space weather of
exoplanets orbiting main-sequence stars? How do the environments surrounding
exoplanets differ from those around the planets in our own solar system? How
can the detailed knowledge acquired by the solar system community be applied in
exoplanetary systems? How does space weather affect habitability? These were
questions that were addressed in the splinter session "Cool stars and Space
Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In
this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar
Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur
Wavelet analysis of the formation of the cosmic web
According to the modern cosmological paradigm galaxies and galaxy systems
form from tiny density perturbations generated during the very early phase of
the evolution of the Universe. Using numerical simulations we study the
evolution of phases of density perturbations of different scales to understand
the formation and evolution of the cosmic web. We apply the wavelet analysis to
follow the evolution of high-density regions (clusters and superclusters) of
the cosmic web. We show that the positions of maxima and minima of density
waves (their spatial phases) almost do not change during the evolution of the
structure. Positions of extrema of density perturbations are the more stable,
the larger is the wavelength of perturbations. Combining observational and
simulation data we conclude that the skeleton of the cosmic web was present
already in an early stage of structure evolution.Comment: 12 pages, 8 figures, revised versio
Shell-like structures in our cosmic neighbourhood
Signatures of the processes in the early Universe are imprinted in the cosmic
web. Some of them may define shell-like structures characterised by typical
scales. We search for shell-like structures in the distribution of nearby rich
clusters of galaxies drawn from the SDSS DR8. We calculate the distance
distributions between rich clusters of galaxies, and groups and clusters of
various richness, look for the maxima in the distance distributions, and select
candidates of shell-like structures. We analyse the space distribution of
groups and clusters forming shell walls. We find six possible candidates of
shell-like structures, in which galaxy clusters have maxima in the distance
distribution to other galaxy groups and clusters at the distance of about 120
Mpc/h. The rich galaxy cluster A1795, the central cluster of the Bootes
supercluster, has the highest maximum in the distance distribution of other
groups and clusters around them at the distance of about 120 Mpc/h among our
rich cluster sample, and another maximum at the distance of about 240 Mpc/h.
The structures of galaxy systems causing the maxima at 120 Mpc/h form an almost
complete shell of galaxy groups, clusters and superclusters. The richest
systems in the nearby universe, the Sloan Great Wall, the Corona Borealis
supercluster and the Ursa Major supercluster are among them. The probability
that we obtain maxima like this from random distributions is lower than 0.001.
Our results confirm that shell-like structures can be found in the distribution
of nearby galaxies and their systems. The radii of the possible shells are
larger than expected for a BAO shell (approximately 109 Mpc/h versus
approximately 120 Mpc/h), and they are determined by very rich galaxy clusters
and superclusters with high density contrast while BAO shells are barely seen
in the galaxy distribution. We discuss possible consequences of these
differences.Comment: Comments: 9 pages, 10 figures, Astronomy and Astrophysics, in pres
FK Comae Berenices, King of Spin: The COCOA-PUFS Project
COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast
spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single
star is thought to be a recent binary merger, and is exceptionally active by
measure of its intense ultraviolet and X-ray emissions, and proclivity to
flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV
(120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph,
but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray
Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy
Transmission Grating Spectrometer; together with supporting photometry and
spectropolarimetry in the visible from the ground. This is an introductory
report on the project.
FK Com displayed variability on a wide range of time scales, over all
wavelengths, during the week-long main campaign, including a large X-ray flare;
"super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV
139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm
(10,000-30,000 K); large Doppler swings suggestive of bright regions
alternately on advancing and retreating limbs of the star; and substantial
redshifts of the epoch-average emission profiles. These behaviors paint a
picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around
the star, threaded by cooler structures perhaps analogous to solar prominences,
and replenished continually by surface activity and flares. Suppression of
angular momentum loss by the confining magnetosphere could temporarily postpone
the inevitable stellar spindown, thereby lengthening this highly volatile stage
of coronal evolution.Comment: to be published in ApJ
- …