5,912 research outputs found

    Properties of the first excited state of 9Be derived from (gamma,n) and (e,e') reactions

    Full text link
    Properties of the first excited state of the nucleus 9Be are discussed based on recent (e,e') and (gamma,n) experiments. The parameters of an R-matrix analysis of different data sets are consistent with a resonance rather than a virtual state predicted by some model calculations. The energy and the width of the resonance are deduced. Their values are rather similar for all data sets, and the energy proves to be negative. It is argued that the disagreement between the extracted B(E1) values may stem from different ways of integration of the resonance. If corrected, fair agreement between the (e,e') and one of the (gamma,n) data sets is found. A recent (gamma,n) experiment at the HIgS facility exhibits larger cross sections close to the neutron threshold which remain to be explained.Comment: 5 pages, accepted fro publication in Phys. Rev.

    Search for weak M1 transitions in 48^{48}Ca with inelastic proton scattering

    Full text link
    The spinflip M1 resonance in the doubly magic nucleus 48^{48}Ca, dominated by a single transition, serves as a reference case for the quenching of spin-isospin modes in nuclei. The aim of the present work is a search for weak M1 transitions in 48^{48}Ca with a high-resolution (p,p') experiment at 295 MeV and forward angles including 0 degree and a comparison to results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B(M1) strength. M1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis. The corresponding reduced B(M1) transition strengths are extracted following the approach outlined in J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016). In total, 29 peaks containing a M1 contribution are found in the excitation energy region 7 - 13 MeV. The resulting B(M1) strength distribution compares well to the electron scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.19(6) μN2\mu_N^2 deduced assuming a non-quenched isoscalar part of the (p,p') cross sections agrees with the (e,e') result of 1.21(13) μN2\mu_N^2. A binwise analysis above 10 MeV provides an upper limit of 1.62(23) μN2\mu_N^2. The present results confirm that weak transitions contribute about 25% to the total B(M1) strength in 48^{48}Ca and the quenching factors of GT and spin-M1 strength are comparable in fp-shell nuclei. Thus, the role of of meson exchange currents seems to be neglible, in contrast to sd-shell nuclei.Comment: 11 pages, 9 figures, revised analysis with oxygen contamination remove

    Persistent Currents in Quantum Chaotic Systems

    Full text link
    The persistent current of ballistic chaotic billiards is considered with the help of the Gutzwiller trace formula. We derive the semiclassical formula of a typical persistent current ItypI^{typ} for a single billiard and an average persistent current for an ensemble of billiards at finite temperature. These formulas are used to show that the persistent current for chaotic billiards is much smaller than that for integrable ones. The persistent currents in the ballistic regime therefore become an experimental tool to search for the quantum signature of classical chaotic and regular dynamics.Comment: 4 pages (RevTex), to appear in Phys. Rev. B, No.59, 12256-12259 (1999

    Interaction-Induced Magnetization of the Two-Dimensional Electron Gas

    Full text link
    We consider the contribution of electron-electron interactions to the orbital magnetization of a two-dimensional electron gas, focusing on the ballistic limit in the regime of negligible Landau-level spacing. This regime can be described by combining diagrammatic perturbation theory with semiclassical techniques. At sufficiently low temperatures, the interaction-induced magnetization overwhelms the Landau and Pauli contributions. Curiously, the interaction-induced magnetization is third-order in the (renormalized) Coulomb interaction. We give a simple interpretation of this effect in terms of classical paths using a renormalization argument: a polygon must have at least three sides in order to enclose area. To leading order in the renormalized interaction, the renormalization argument gives exactly the same result as the full treatment.Comment: 11 pages including 4 ps figures; uses revtex and epsf.st

    The magnetic susceptibility of disordered non-diffusive mesoscopic systems

    Full text link
    Disorder-induced spectral correlations of mesoscopic quantum systems in the non-diffusive regime and their effect on the magnetic susceptibility are studied. We perform impurity averaging for non-translational invariant systems by combining a diagrammatic perturbative approach with semiclassical techniques. This allows us to study the entire range from clean to diffusive systems. As an application we consider the magnetic response of non-interacting electrons in microstructures in the presence of weak disorder. We show that in the ballistic case (elastic mean free path â„“\ell larger than the system size) there exist two distinct regimes of behaviour depending on the relative magnitudes of â„“\ell and an inelastic scattering length LÏ•L_{\phi}. We present numerical results for square billiards and derive approximate analytical results for generic chaotic geometries. The magnetic field dependence and LÏ•L_{\phi} dependence of the disorder-induced susceptibility is qualitatively similar in both types of geometry.Comment: 11 pages, 7 eps figures, to be published in Phys. Rev.

    Electromagnetic M1 transition strengths from inelastic proton scattering: The cases of 48Ca and 208Pb

    Full text link
    Inelastic proton scattering at energies of a few hundred MeV and extreme forward angles selectively excites the isovector spin-flip M1 (IVSM1) resonance. A method based on isospin symmetry is presented to extract its electromagnetic transition strength from the (p,p') cross sections. It is applied to 48Ca, a key case for an interpretation of the quenching phenomenon of the spin-isospin response, and leads to a M1 strength consistent with an older (e,e') experiment excluding the almost two times larger value from a recent (\gamma,n) experiment. Good agreement with electromagnetic probes is observed in 208Pb suggesting the possibility to extract systematic information on the IVSM1 resonance in heavy nuclei.Comment: 6 pages, 4 figure

    Persistent currents in diffusive metallic cavities: Large values and anomalous scaling with disorder

    Full text link
    The effect of disorder on confined metallic cavities with an Aharonov-Bohm flux line is addressed. We find that, even deep in the diffusive regime, large values of persistent currents may arise for a wide variety of geometries. We present numerical results supporting an anomalous scaling law of the average typical current with the strength of disorder ww, ∼w−γ \sim w^{- \gamma} with γ<2\gamma < 2. This is contrasted with previously reported results obtained for cylindrical samples where a scaling ∼w−2 \sim w^{-2} has been found. Possible links to, up to date, unexplained experimental data are finally discussed.Comment: 5 pages, 4 figure

    Studies of the Giant Dipole Resonance in 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb with high energy-resolution inelastic proton scattering under 0∘^\circ

    Full text link
    A survey of the fine structure of the Isovector Giant Dipole Resonance (IVGDR) was performed, using the recently commissioned zero-degree facility of the K600 magnetic spectrometer at iThemba LABS. Inelastic proton scattering at an incident energy of 200 MeV was measured on 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb. A high energy resolution (ΔE≃\rm{\Delta}\it{E} \simeq 40 keV FWHM) could be achieved after utilising faint-beam and dispersion-matching techniques. Considerable fine structure is observed in the energy region of the IVGDR and characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The comparison with Quasiparticle-Phonon Model (QPM) calculations provides insight into the relevance of different giant resonance decay mechanisms. Photoabsorption cross sections derived from the data assuming dominance of relativistic Coulomb excitation are in fair agreement with previous work using real photons.Comment: 15 pages, 15 figure
    • …
    corecore