99 research outputs found

    Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression

    Get PDF
    Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.Peer reviewe

    Spared Nerve Injury Causes Sexually Dimorphic Mechanical Allodynia and Differential Gene Expression in Spinal Cords and Dorsal Root Ganglia in Rats

    Get PDF
    Neuropathic pain is more prevalent in women. However, females are under-represented in animal experiments, and the mechanisms of sex differences remain inadequately understood. We used the spared nerve injury (SNI) model in rats to characterize sex differences in pain behaviour, unbiased RNA-Seq and proteomics to study the mechanisms. Male and female rats were subjected to SNI- and sham-surgery. Mechanical and cold allodynia were assessed. Ipsilateral lumbar dorsal root ganglia (DRG) and spinal cord (SC) segments were collected for RNA-seq analysis with DESeq2 on Day 7. Cerebrospinal fluid (CSF) samples for proteomic analysis and DRGs and SCs for analysis of IB-4 and CGRP, and IBA1 and GFAP, respectively, were collected on Day 21. Females developed stronger mechanical allodynia. There were no differences between the sexes in CGRP and IB-4 in the DRG or glial cell markers in the SC. No CSF protein showed change following SNI. DRG and SC showed abundant changes in gene expression. Sexually dimorphic responses were found in genes related to T-cells (cd28, ctla4, cd274, cd4, prf1), other immunological responses (dpp4, c5a, cxcr2 and il1b), neuronal transmission (hrh3, thbs4, chrna4 and pdyn), plasticity (atf3, c1qc and reg3b), and others (bhlhe22, mcpt1l, trpv6). We observed significantly stronger mechanical allodynia in females and numerous sexually dimorphic changes in gene expression following SNI in rats. Several genes have previously been linked to NP, while some are novel. Our results suggest gene targets for further studies in the development of new, possibly sex-specific, therapies for NP.Peer reviewe

    A digital waveguide-based approach for Clavinet modeling and synthesis

    Get PDF
    The Clavinet is an electromechanical musical instrument produced in the mid-twentieth century. As is the case for other vintage instruments, it is subject to aging and requires great effort to be maintained or restored. This paper reports analyses conducted on a Hohner Clavinet D6 and proposes a computational model to faithfully reproduce the Clavinet sound in real time, from tone generation to the emulation of the electronic components. The string excitation signal model is physically inspired and represents a cheap solution in terms of both computational resources and especially memory requirements (compared, e.g., to sample playback systems). Pickups and amplifier models have been implemented which enhance the natural character of the sound with respect to previous work. A model has been implemented on a real-time software platform, Pure Data, capable of a 10-voice polyphony with low latency on an embedded device. Finally, subjective listening tests conducted using the current model are compared to previous tests showing slightly improved results

    Differential Spinal and Supraspinal Activation of Glia in a Rat Model of Morphine Tolerance

    Get PDF
    Development of tolerance is a well known pharmacological characteristic of opioids and a major clinical problem. In addition to the known neuronal mechanisms of opioid tolerance, activation of glia has emerged as a potentially significant new mechanism. We studied activation of microglia and astrocytes in morphine tolerance and opioid-induced hyperalgesia in rats using immunohistochemistry, flow cytometry and RNA sequencing in spinal-and supraspinal regions. Chronic morphine treatment that induced tolerance and hyperalgesia also increased immunoreactivity of spinal microglia in the dorsal and ventral horns. Flow cytometry demonstrated that morphine treatment increased the proportion of M2-polarized spinal microglia, but failed to impact the number or the proportion of M1-polarized microglia. In the transcriptome of microglial cells isolated from the spinal cord (SC), morphine treatment increased transcripts related to cell activation and defense response. In the studied brain regions, no activation of microglia or astrocytes was detected by immunohistochemistry, except for a decrease in the number of microglial cells in the substantia nigra. In flow cytometry, morphine caused a decrease in the number of microglial cells in the medulla, but otherwise no change was detected for the count or the proportion of M1-and M2-polarized microglia in the medulla or sensory cortex. No evidence for the activation of glia in the brain was seen. Our results suggest that glial activation associated with opioid tolerance and opioid-induced hyperalgesia occurs mainly at the spinal level. The transcriptome data suggest that the microglial activation pattern after chronic morphine treatment has similarities with that of neuropathic pain. (C) 2018 IBRO. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine

    Get PDF
    The blood-brain barrier significantly limits effective drug delivery to central nervous system (CNS) targets. The recently characterized glymphatic system offers a perivascular highway for intrathecally (i.t.) administered drugs to reach deep brain structures. Although periarterial cerebrospinal fluid (CSF) influx and concomitant brain drug delivery can be enhanced by pharmacological or hyperosmotic interventions, their effects on drug delivery to the spinal cord, an important target for many drugs, have not been addressed. Hence, we studied in rats whether enhancement of periarterial flow by systemic hypertonic solution might be utilized to enhance spinal delivery and efficacy of i.t. morphine. We also studied whether the hyperosmolar intervention affects brain or cerebrospinal fluid drug concentrations after systemic administration. Periarterial CSF influx was enhanced by intraperitoneal injection of hypertonic saline (HTS, 5.8%, 20 ml/kg, 40 mOsm/kg). The antinociceptive effects of morphine were characterized, using tail flick, hot plate and paw pressure tests. Drug concentrations in serum, tissue and microdialysis samples were determined by liquid chromatography-tandem mass spectrometry. Compared with isotonic solution, HTS increased concentrations of spinal i.t. administered morphine by 240% at the administration level (T13-L1) at 60 min and increased the antinociceptive effect of morphine in tail flick, hot plate, and paw pressure tests. HTS also independently increased hot plate and paw pressure latencies but had no effect in the tail flick test. HTS transiently increased the penetration of intravenous morphine into the lateral ventricle, but not into the hippocampus. In conclusion, acute systemic hyperosmolality is a promising intervention for enhanced spinal delivery of i.t. administered morphine. The relevance of this intervention should be expanded to other i.t. drugs and brought to clinical trials.Peer reviewe

    Quality of life and neck pain in nurses

    Full text link
    Objectives: To investigate the association between neck pain and psychological stress in nurses. Material and Methods: Nurses from the Avon Orthopaedic Centre completed 2 questionnaires: the Short Form-36 (SF-36) and 1 exploring neck pain and associated psychological stress. Results: Thirty four nurses entered the study (68% response). Twelve (35.3%) had current neck pain, 13 (38.2%) reported neck pain within the past year and 9 (26.5%) had no neck pain. Subjects with current neck pain had significantly lower mental health (47.1 vs. 70.4; p = 0.002), physical health (60.8 vs. 76.8; p = 0.010) and overall SF-36 scores (56.8 vs. 74.9; p = 0.003). Five (41.7%) subjects with current neck pain and 5 (38.5%) subjects with neck pain in the previous year attributed it to psychological stress. Conclusions: Over 1/3 of nurses have symptomatic neck pain and significantly lower mental and physical health scores. Managing psychological stress may reduce neck pain, leading to improved quality of life for nurses, financial benefits for the NHS, and improved patient care

    Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs

    Get PDF
    Drug delivery to the central nervous system remains a major problem due to biological barriers. The blood-brainbarrier can be bypassed by administering drugs intrathecally directly to the cerebrospinal fluid (CSF). The glymphatic system, a network of perivascular spaces promoting fluid exchange between CSF and interstitial space, could be utilized to enhance convective drug delivery from the CSF to the parenchyma. Glymphatic flow is highest during sleep and anesthesia regimens that induce a slow-wave sleep-like state. Here, using mass spectrometry and fluorescent imaging techniques, we show that the clinically used alpha(2)-adrenergic agonist dexme-detomidine that enhances EEG slow-wave activity, increases brain and spinal cord drug exposure of intrathecally administered drugs in mice and rats. Using oxycodone, naloxone, and an IgG-sized antibody as relevant model drugs we demonstrate that modulation of glymphatic flow has a distinct impact on the distribution of intrathecally administered therapeutics. These findings can be exploited in the clinic to improve the efficacy and safety of intrathecally administered therapeutics.Peer reviewe

    Potential Tumor Suppressor NESG1 as an Unfavorable Prognosis Factor in Nasopharyngeal Carcinoma

    Get PDF
    BACKGROUND:Recently we identified nasopharyngeal epithelium specific protein 1 (NESG1) as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). The purpose of this study is to investigate the involvement of NESG1 in tumor progression and prognosis of human NPC. METHODOLOGY/PRINCIPAL FINDINGS:NESG1 protein expression in NPC was examined. Survival analysis was performed using Kaplan-Meier method. The effect of NESG1 on cell proliferation, migration, and invasion were also investigated. RESULTS:NESG1 expression was downregulated in atypical hyperplasia and NPC samples compared to normal and squamous nasopharynx tissues. Reduced protein expression was negatively associated with the status of NPC progression. Patients with lower NESG1 expression had a shorter overall survival and disease-free time than did patients with higher NESG1 expression. Multivariate analysis suggested NESG1 expression as an independent prognostic indicator for NPC patient survival. Proliferation, migration, and invasion ability were significantly increased in cell lines following lentiviral-mediated shRNA suppression of NESG1 expression. Microarray analysis indicated that NESG1 participated in multiple pathways, including MAPK signaling and cell cycle regulation. Finally, DNA methylation microarray examination revealed a lack of hypermethylation at the NESG1 promoter, suggesting other mechanisms are involved in suppressing NESG1 expression in NPC. CONCLUSION:Our studies are the first to demonstrate that decreased NESG1 expression is an unfavorable prognostic factor for NPC

    Association of MiR-126 with Soluble Mesothelin-Related Peptides, a Marker for Malignant Mesothelioma

    Get PDF
    BACKGROUND: Improved detection methods for diagnosis of malignant pleural mesothelioma (MPM) are essential for early and reliable detection as well as treatment. Since recent data point to abnormal levels of microRNAs (miRNAs) in tumors, we hypothesized that a profile of deregulated miRNAs may be a marker of MPM and that the levels of specific miRNAs may be used for monitoring its progress. METHODS AND RESULTS: miRNAs isolated from fresh-frozen biopsies of MPM patients were tested for the expression of 88 types of miRNA involved in cancerogenesis. Most of the tested miRNAs were downregulated in the malignant tissues compared with the normal tissues. Of eight significantly downregulated, three miRNAs were assayed in cancerous tissue and adjacent non-cancerous tissue sample pairs collected from 27 formalin-fixed, paraffin-embedded MPM tissues by quantitative RT-PCR. Among the miRNAs tested, only miR-126 significantly remained downregulated in the malignant tissues. Furthermore, the performance of the selected miR-126 as biomarker was evaluated in serum samples of asbestos-exposed subjects and MPM patients and compared with controls. MiR-126 was not affected by asbestos exposure, whereas it was found strongly associated with VEGF serum levels. Levels of miR-126 in serum, and its levels in patients' serum in association with a specific marker of MPM, SMRPs, correlate with subjects at high risk to develop MPM. CONCLUSIONS AND SIGNIFICANCE: We propose miR-126, in association with SMRPs, as a marker for early detection of MPM. The identification of tumor biomarkers used alone or, in particular, in combination could greatly facilitate the surveillance procedure for cohorts of subjects exposed to asbestos

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF
    corecore