122 research outputs found

    Determinants of agricultural land abandonment in post-soviet European Russia

    Get PDF
    Socio-economic and institutional changes may accelerate land-use and land-cover change. Our goal was to explore the determinants of agricultural land abandonment within one agro-climatic and economic region of post-Soviet European Russia during the first decade of transition from a state-command to market-driven economy (between 1990 and 2000). We integrated maps of abandoned agricultural land derived from 30 m resolution Landsat TM/ETM+ images, environmental and socioeconomic variables and estimated logistic regressions. Results showed that post-Soviet agricultural land abandonment was significantly associated with lower average grain yields in the late 1980s, higher distance from the populated places, areas with low population densities, for isolated agricultural areas within the forest matrix and near the forest edges. Hierarchical partitioning showed that average grain yields in the late 1980s contributed the most in explaining the variability of agricultural land abandonment, followed by location characteristics of the land. While the spatial patterns correspond to the classic micro-economic theories of von Thünen and Ricardo, it was largely the macro-scale driving forces that fostered agricultural abandonment. In the light of continuum depopulation process in the studied region of European Russia, we expect continuing agricultural abandonment after the year 2000. --agricultural land abandonment,institutional change, land use change,spatial analysis,logistic regression,remote sensing,Russia

    Global priorities for conservation across multiple dimensions of mammalian diversity

    Get PDF
    Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to (i) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity-taxonomic, phylogenetic, and traits-and (ii) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts

    Key Areas For Conserving United States\u27 Biodiversity Likely Threatened By Future Land Use Change

    Get PDF
    A major challenge for biodiversity conservation is to mitigate the effects of future environmental change, such as land use, in important areas for biodiversity conservation. In the United States, recent conservation efforts by The Nature Conservancy and partners have identified and mapped the nation\u27s Areas of Biodiversity Significance (ABS), representing the best remaining habitats for the full diversity of native species and ecosystems, and thus the most important and suitable areas for the conservation of native biodiversity. Our goal was to understand the potential consequences of future land use changes on the nation\u27s ABS, and identify regions where ABS are likely to be threatened due to future land use expansion. For this, we used an econometric-based model to forecast land use changes between 2001 and 2051 across the conterminous U. S. under alternative scenarios of future land use change. Our model predicted a total of similar to 100,000 to 160,000 km(2) of natural habitats within ABS replaced by urban, crop and pasture expansion depending on the scenario (5% to 8% habitat loss across the conterminous U.S.), with some regions experiencing up to 30% habitat loss. The majority of the most threatened ABS were located in the Eastern half of the country. Results for our different scenarios were generally fairly consistent, but some regions exhibited notable difference from the baseline under specific policies and changes in commodity prices. Overall, our study suggests that key areas for conserving United States\u27 biodiversity are likely threatened by future land use change, and efforts trying to preserve the ecological and conservation values of ABS will need to address the potential intensification of human land uses

    Beyond the 1984 Perspective: Narrow Focus on Modern Wildfire Trends Underestimates Future Risks to Water Security

    Get PDF
    The western United States remains well below historical wildfire activity, yet misconceptions abound in the public and news media that the area burning by wildfire each year in the American West is unprecedented. We submit that short‐term records of wildfire and a disproportionate focus on recent fire trends within high‐profile science stoke these misconceptions. Furthermore, we highlight serious risks to long‐term water security (encompassing water supply, storage, and quality) that have only recently been recognized and are underestimated as the result of skewed perspectives of wildfire. Compiling several data sets, we illustrate a comprehensive history of western wildfire, demonstrate that the majority of western settlement occurred during an artificially and anomalously low period of wildfire in the twentieth century, and discuss the troubling implications the misalignment of wildfire activity and human development may have for the long‐term projections of water security. A crucial first step toward realigning public perspectives will require scientists and journalists to present recent increases in wildfire area within the context and scale of longer‐term trends. Second, proper housing development and resource management will require an appreciation for the differing western ecosystems and the flexibility to adopt varied approaches. These actions are critical for realigning public understanding of both the direct and indirect risks associated with wildfire and ensuring adequate and appropriate measures are taken as we navigate a future of increasing fire in the West

    Using the Landsat data archive to assess long-term regional forest dynamics assessment in Eastern Europe, 1985-2012

    Get PDF
    Abstract. Dramatic political and economic changes in Eastern European countries following the dissolution of the “Eastern Bloc” and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national scale. Our results allow national and sub-national level analysis of forest cover extent, change, and logging intensity and are available on-line as a baseline for further analyses of forest dynamics and its drivers

    Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series

    Get PDF
    © 2018 Elsevier Inc. Agricultural land abandonment is a common land-use change, making the accurate mapping of both location and timing when agricultural land abandonment occurred important to understand its environmental and social outcomes. However, it is challenging to distinguish agricultural abandonment from transitional classes such as fallow land at high spatial resolutions due to the complexity of change process. To date, no robust approach exists to detect when agricultural land abandonment occurred based on 30-m Landsat images. Our goal here was to develop a new approach to detect the extent and the exact timing of agricultural land abandonment using spatial and temporal segments derived from Landsat time series. We tested our approach for one Landsat footprint in the Caucasus, covering parts of Russia and Georgia, where agricultural land abandonment is widespread. First, we generated agricultural land image objects from multi-date Landsat imagery using a multi-resolution segmentation approach. Second, we estimated the probability for each object that agricultural land was used each year based on Landsat temporal-spectral metrics and a random forest model. Third, we applied temporal segmentation of the resulting agricultural land probability time series to identify change classes and detect when abandonment occurred. We found that our approach was able to accurately separate agricultural abandonment from active agricultural lands, fallow land, and re-cultivation. Our spatial and temporal segmentation approach captured the changes at the object level well (overall mapping accuracy = 97 ± 1%), and performed substantially better than pixel-level change detection (overall accuracy = 82 ± 3%). We found strong spatial and temporal variations in agricultural land abandonment rates in our study area, likely a consequence of regional wars after the collapse of the Soviet Union. In summary, the combination of spatial and temporal segmentation approaches of time-series is a robust method to track agricultural land abandonment and may be relevant for other land-use changes as well

    Economic-based projections of future land use in the conterminous United States under alternative policy scenarios

    Get PDF
    Land-use change significantly contributes to biodiversity loss, invasive species spread, changes in biogeochemical cycles, and the loss of ecosystem services. Planning for a sustainable future requires a thorough understanding of expected land use at the fine spatial scales relevant for modeling many ecological processes and at dimensions appropriate for regional or national-level policy making. Our goal was to construct and parameterize an econometric model of land-use change to project future land use to the year 2051 at a fine spatial scale across the conterminous United States under several alternative land-use policy scenarios. We parameterized the econometric model of land-use change with the National Resource Inventory (NRI) 1992 and 1997 land-use data for 844 000 sample points. Land-use transitions were estimated for five land-use classes (cropland, pasture, range, forest, and urban). We predicted land-use change under four scenarios: business-as-usual, afforestation, removal of agricultural subsidies, and increased urban rents. Our results for the business-as-usual scenario showed widespread changes in land use, affecting 36% of the land area of the conterminous United States, with large increases in urban land (79%) and forest (7%), and declines in cropland (\-16%) and pasture (\-13%). Areas with particularly high rates of land-use change included the larger Chicago area, parts of the Pacific Northwest, and the Central Valley of California. However, while land-use change was substantial, differences in results among the four scenarios were relatively minor. The only scenario that was markedly different was the afforestation scenario, which resulted in an increase of forest area that was twice as high as the business-as-usual scenario. Land-use policies can affect trends, but only so much. The basic economic and demographic factors shaping land-use changes in the United States are powerful, and even fairly dramatic policy changes, showed only moderate deviations from the business-as-usual scenario. Given the magnitude of predicted land-use change, any attempts to identify a sustainable future or to predict the effects of climate change will have to take likely land-use changes into account. Econometric models that can simulate land-use change for broad areas with fine resolution are necessary to predict trends in ecosystem service provision and biodiversity persistence. © 2012 by the Ecological Society of America

    Economic-based Projections Of Future Land Use In The Conterminous United States Under Alternative Policy Scenarios

    Get PDF
    The article presents a study which constructs and parameterizes an econometric model of land-use change to project future land use to the year 2051 at a fine spatial scale across the conterminous U.S. under several alternative land-use policy scenarios. It parameterizes the econometric model of land-use change with the National Resource Inventory (NRI) 1992 and 1997 land-use data for 844 000 sample points
    corecore