5,485 research outputs found

    Geometric phase for a dimerized disordered continuum: Topological shot noise

    Get PDF
    Geometric phase shift associated with an electron propagating through a dimerized-disordered continuum is shown to be 0, or ±π\pm \pi (modulo 2π\pi), according as the associated circuit traversed in the two-dimensional parameter space excludes, or encircles a certain singularity. This phase-shift is a topological invariant. Its discontinuous dependence on the electron energy and disorder implies a statistical spectral and conductance fluctuation in a corresponding mesoscopic system. Inasmuch as the fluctuation derives from the discreteness of the phase shift, it may aptly be called a topological shot-noise.Comment: 10 pages(LATEX) + 1 figure, (revised version). Will appear in Europhys. Let

    Dynamics of Magnetized Bulk Viscous Strings in Brans-Dicke Gravity

    Full text link
    We explore locally rotationally symmetric Bianchi I universe in Brans-Dicke gravity with self-interacting potential by using charged viscous cosmological string fluid. We use a relationship between the shear and expansion scalars and also take the power law for scalar field as well as self-interacting potential. It is found that the resulting universe model maintains its anisotropic nature at all times due to the proportionality relationship between expansion and shear scalars. The physical implications of this model are discussed by using different parameters and their graphs. We conclude that this model corresponds to an accelerated expanding universe for particular values of the parameters.Comment: 17 pages, 6 figure

    Effect of shape anisotropy on transport in a 2-dimensional computational model: Numerical simulations showing experimental features observed in biomembranes

    Full text link
    We propose a 2-d computational model-system comprising a mixture of spheres and the objects of some other shapes, interacting via the Lennard-Jones potential. We propose a reliable and efficient numerical algorithm to obtain void statistics. The void distribution, in turn, determines the selective permeability across the system and bears a remarkable similarity with features reported in certain biological experiments.Comment: 1 tex file, 2 sty files and 5 figures. To appear in Proc. of StatPhys conference held in Calcutta, Physica A 199

    A study of electric motors for use in liquid and gaseous helium Engineering report no. 3530

    Get PDF
    Electric motor design and operation in liquid and gaseous helium environment

    Stability analysis and quasinormal modes of Reissner Nordstr{\o}m Space-time via Lyapunov exponent

    Full text link
    We explicitly derive the proper time (τ)(\tau) principal Lyapunov exponent (λp\lambda_{p}) and coordinate time (tt) principal Lyapunov exponent (λc\lambda_{c}) for Reissner Nordstr{\o}m (RN) black hole (BH) . We also compute their ratio. For RN space-time, it is shown that the ratio is λpλc=r0r023Mr0+2Q2\frac{\lambda_{p}}{\lambda_{c}}=\frac{r_{0}}{\sqrt{r_{0}^2-3Mr_{0}+2Q^2}} for time-like circular geodesics and for Schwarzschild BH it is λpλc=r0r03M\frac{\lambda_{p}}{\lambda_{c}}=\frac{\sqrt{r_{0}}}{\sqrt{r_{0}-3M}}. We further show that their ratio λpλc\frac{\lambda_{p}}{\lambda_{c}} may vary from orbit to orbit. For instance, Schwarzschild BH at innermost stable circular orbit(ISCO), the ratio is λpλcrISCO=6M=2\frac{\lambda_{p}}{\lambda_{c}}\mid_{r_{ISCO}=6M}=\sqrt{2} and at marginally bound circular orbit (MBCO) the ratio is calculated to be λpλcrmb=4M=2\frac{\lambda_{p}}{\lambda_{c}}\mid_{r_{mb}=4M}=2. Similarly, for extremal RN BH the ratio at ISCO is λpλcrISCO=4M=223\frac{\lambda_{p}}{\lambda_{c}}\mid_{r_{ISCO}=4M}=\frac{2\sqrt{2}}{\sqrt{3}}. We also further analyse the geodesic stability via this exponent. By evaluating the Lyapunov exponent, it is shown that in the eikonal limit , the real and imaginary parts of the quasi-normal modes of RN BH is given by the frequency and instability time scale of the unstable null circular geodesics.Comment: Accepted in Pramana, 07/09/201

    Elastic and structural instability of cubic Sn3N4 and C3N4 under pressure

    Get PDF
    We use in-situ high pressure angle dispersive x-ray diffraction measurements to determine the equation of state of cubic tin nitride Sn3N4 under pressure up to about 26 GPa. While we find no evidence for any structural phase transition, our estimate of the bulk modulus (B) is 145 GPa, much lower than the earlier theoretical estimates and that of other group IV-nitrides. We corroborate and understand these results with complementary first-principles analysis of structural, elastic and vibrational properties of group IV-nitrides, and predict a structural transition of Sn3N4 at a higher pressure of 88 GPa compared to earlier predictions of 40 GPa. Our comparative analysis of cubic nitrides shows that bulk modulus of cubic C3N4 is the highest (379 GPa) while it is structurally unstable and should not exist at ambient conditions.Comment: 5 pages, 4 figure
    corecore