162 research outputs found

    Space-Time and Matter in IIB Matrix Model - gauge symmetry and diffeomorphism -

    Get PDF
    We pursue the study of the type IIB matrix model as a constructive definition of superstring. In this paper, we justify the interpretation of space-time as distribution of eigenvalues of the matrices by showing that some low energy excitations indeed propagate in it. In particular, we show that if the distribution consists of small clusters of size nn, low energy theory acquires local SU(n) gauge symmetry and a plaquette action for the associated gauge boson is induced, in addition to a gauge invariant kinetic term for a massless fermion in the adjoint representation of the SU(n). We finally argue a possible identification of the diffeomorphism symmetry with permutation group acting on the set of eigenvalues, and show that the general covariance is realized in the low energy effective theory even though we do not have a manifest general covariance in the IIB matrix model action.Comment: 25 page

    Quantum Decoherence in a D-Foam Background

    Get PDF
    Within the general framework of Liouville string theory, we construct a model for quantum D-brane fluctuations in the space-time background through which light closed-string states propagate. The model is based on monopole and vortex defects on the world sheet, which have been discussed previously in a treatment of 1+1-dimensional black-hole fluctuations in the space-time background, and makes use of a T-duality transformation to relate formulations with Neumann and Dirichlet boundary conditions. In accordance with previous general arguments, we derive an open quantum-mechanical description of this D-brane foam which embodies momentum and energy conservation and small mean energy fluctuations. Quantum decoherence effects appear at a rate consistent with previous estimates.Comment: 16 pages, Latex, two eps figures include

    Minimal subtraction and the Callan-Symanzik equation

    Get PDF
    The usual proof of renormalizability using the Callan-Symanzik equation makes explicit use of normalization conditions. It is shown that demanding that the renormalization group functions take the form required for minimal subtraction allows one to prove renormalizability using the Callan-Symanzik equation, without imposing normalization conditions. Scalar field theory and quantum electrodynamics are treated.Comment: 6 pages, plain Te
    • …
    corecore