26,747 research outputs found

    Initial stages of cavitation damage and erosion on copper and brass tested in a rotating disk device

    Get PDF
    In view of the differences in flow and experimental conditions, there has been a continuing debate as to whether or not the ultrasonic method of producing cavitation damage is similar to the damage occurring in cavitating flow systems, namely, venturi and rotating disk devices. In this paper, the progress of cavitation damage during incubation periods on polycrystalline copper and brass tested in a rotating disk device is presented. The results indicate several similarities and differences in the damage mechanism encountered in a rotating disk device (which simulates field rotary devices) and a magnetostriction apparatus. The macroscopic erosion appears similar to that in the vibratory device except for nonuniform erosion and apparent plastic flow during the initial damage phase

    Size scale effect in cavitation erosion

    Get PDF
    An overview and data analyses pertaining to cavitation erosion size scale effects are presented. The exponents n in the power law relationship are found to vary from 1.7 to 4.9 for venturi and rotating disk devices supporting the values reported in the literature. Suggestions for future studies were made to arrive at further true scale effects

    GMRT observations of X-shaped radio sources

    Get PDF
    We present results from a study of X-shaped sources based on observations using the Giant Metrewave Radio Telescope (GMRT). These observations were motivated by our low frequency study of 3C 223.1 (Lal & Rao 2005), an X-shaped radio source, which showed that the wings (or low-surface-brightness jets) have flatter spectral indices than the active lobes (or high-surface-brightness jets), a result not easily explained by most models. We have now obtained GMRT data at 240 and 610 MHz for almost all the known X-shaped radio sources and have studied the distribution of the spectral index across the sources. While the radio morphologies of all the sources at 240 and 610 MHz show the characteristic X-shape, the spectral characteristics of the X-shaped radio sources, seem to fall into three categories, namely, sources in which (A) the wings have flatter spectral indices than the active lobes, (B) the wings and the active lobes have comparable spectral indices, and (C) the wings have steeper spectral indices than the active lobes. We discuss the implications of the new observational results on the various formation models that have been proposed for X-shaped sources.Comment: The paper contains 12 figures and 3 tables, accepted for publication in MNRAS Main Journal, please note, some figures are of lower qualit

    Design and breadboard evaluation of the SPS reference phase control system concept

    Get PDF
    The total breadboard system includes one pilot transmitter, one pilot receiver, nine phase distribution units, and two power transponders. With this complement of equipment, segments of a typical phase distribution system can be assembled to facilitate the evaluation of significant system parameters. The achievable accuracy of a large phase distribution system, the sensitivity of the system to parameter variations, and the limitations of commercially available components in such applications were determined

    A comprehensive analysis of cavitation and liquid impingement erosion data

    Get PDF
    Cavitation-erosion experimental data previously covering several materials tested in a rotating disk device and a magnetostriction apparatus were analyzed using new normalization and curve-fitting techniques. From this process a universal approach is derived which can include data from cavitation and liquid impingement studies for specific materials from different test devices

    Universal approach to analysis of cavitation and liquid-impingement erosion data

    Get PDF
    Cavitation erosion experimental data was analyzed by using normalization and curve-fitting techniques. Data were taken from experiments on several materials tested in both a rotating disk device and a magnetostriction apparatus. Cumulative average volume loss rate and time data were normalized relative to the peak erosion rate and the time to peak erosion rate, respectively. From this process a universal approach was derived that can include data on specific materials from different test devices for liquid impingement and cavitation erosion studies

    Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence

    Get PDF
    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials

    Empirical relations for cavitation and liquid impingement erosion processes

    Get PDF
    A unified power-law relationship between average erosion rate and cumulative erosion is presented. Extensive data analyses from venturi, magnetostriction (stationary and oscillating specimens), liquid drop, and jet impact devices appear to conform to this relation. A normalization technique using cavitation and liquid impingement erosion data is also presented to facilitate prediction. Attempts are made to understand the relationship between the coefficients in the power-law relationships and the material properties
    corecore