8,270 research outputs found

    Dynamical Casimir effect with cylindrical waveguides

    Full text link
    I consider the quantum electromagnetic field in a coaxial cylindrical waveguide, such that the outer cylindrical surface has a time-dependent radius. The field propagates parallel to the axis, inside the annular region between the two cylindrical surfaces. When the mechanical frequency and the thickness of the annular region are small enough, only Transverse Electromagnetic (TEM) photons may be generated by the dynamical Casimir effect. The photon emission rate is calculated in this regime, and compared with the case of parallel plates in the limit of very short distances between the two cylindrical surfaces. The proximity force approximation holds for the transition matrix elements in this limit, but the emission rate scales quadratically with the mechanical frequency, as opposed to the cubic dependence for parallel plates.Comment: 6 page

    Canonical transformation for stiff matter models in quantum cosmology

    Full text link
    In the present work we consider Friedmann-Robertson-Walker models in the presence of a stiff matter perfect fluid and a cosmological constant. We write the superhamiltonian of these models using the Schutz's variational formalism. We notice that the resulting superhamiltonians have terms that will lead to factor ordering ambiguities when they are written as operators. In order to remove these ambiguities, we introduce appropriate coordinate transformations and prove that these transformations are canonical using the symplectic method.Comment: Revtex4 Class, 3 pages, No Figure

    A procedure for testing the quality of LANDSAT atmospheric correction algorithms

    Get PDF
    There are two basic methods for testing the quality of an algorithm to minimize atmospheric effects on LANDSAT imagery: (1) test the results a posteriori, using ground truth or control points; (2) use a method based on image data plus estimation of additional ground and/or atmospheric parameters. A procedure based on the second method is described. In order to select the parameters, initially the image contrast is examined for a series of parameter combinations. The contrast improves for better corrections. In addition the correlation coefficient between two subimages, taken at different times, of the same scene is used for parameter's selection. The regions to be correlated should not have changed considerably in time. A few examples using this proposed procedure are presented
    • …
    corecore