19 research outputs found

    Simple screening method for isolation of penicillin acylase-producing bacteria.

    No full text

    Supplementary Material for: Effective Improvement of <i>D</i>-Phenylglycine Aminotransferase Solubility by Protein Crystal Contact Engineering

    No full text
    Structure-guided genetic engineering of <i>D</i>-phenylglycine aminotransferase (<i>D</i>-PhgAT) aimed at increasing protein solubility was attempted. In silico analyses predicted the Asn439 and Gln444 as highly solvent-exposed β-turn residues involved with protein crystal contact (CC) potential candidates for solubility-improving mutations. They were replaced with Asp and Glu creating the N439D and Q444E single mutants, and N439D/Q444E double mutant with 2.5-, 3.3- and 5.9-fold increases in solubility, respectively. The protein CC prevention effect rather than the net charge effect accounted for the dramatically improved solubility since the N439D, Q444E and N439D/Q444E mutations altered the isoelectric point of <i>D</i>-PhgAT by only 0.1, 0.1 and 0.3 units, respectively. Examination of the <i>D</i>-PhgAT structural model revealed that the N439D mutation weakened the CC attraction force and the Q444E mutation created electrostatic repulsion at the CC point. Analysis of circular dichroism spectra, melting temperature, and <i>D</i>-PhgAT-specific activity showed that the mutations posed no unfavorable effect on the conformational stability and catalytic performance of the enzyme. The protein solubility-improving strategy employed on <i>D</i>-PhgAT in this study was successful with minimal protein structure modification required. It should be applicable with a high chance of success for other proteins, especially those with 3-D structural models available

    Specific detection of L-glutamate in food using flow-injection analysis and enzymatic recycling of substrate

    No full text
    A flow injection analysis (FIA) system for specific determination of L-glutamate in food samples based on a bi-enzymatic amplification system has been developed. The content of L-glutamate in the sample was amplified by cycling between L-glutamate dehydrogenase (GIDH) and a novel enzyme, D-phenylglycine aminotransferase (D-PhgAT). In this system, GIDH converts L-glutamate to 2-oxoglutarate with concomitant reduction of NAD(+) to NADH. D-PhgAT transfers an amino group from D-4-hydroxyphenylglycine to 2-oxoglutarate, thus recycling L-glutamate. Accumulation of NADH in the course of the enzymatic recycling was monitored both by fluorescence and UV absorbance and used for quantification of L-glutamate. The assay was characterized by high long-term stability (at least 70 days) and good reproducibility (within-day and between-day RSDs were 4.3-7.3% and 8.9%). The fluorimetric assay was slightly more sensitive with a L-glutamate detection limit of 0.4 muM and linear range of 2.5-50 muM. The assay was specific for L-glutamate, with recoveries between 95-103% in the presence of 17 different amino acids tested one by one. The method was applied to analysis of real food samples and results were correlated with a commercial Boehringer Mannheim assay kit. (C) 2004 Elsevier B.V. All rights reserved

    On-chip microfluidic systems for determination of L-glutamate based on enzymatic recycling of substrate

    Get PDF
    Two microfluidic systems have been developed for specific analysis of L-glutamate in food based on substrate recycling fluorescence detection. L-glutamate dehydrogenase and a novel enzyme, D-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips containing 32 porous flow channels of 235 μm depth and 25 μm width and (ii) polystyrene Poros™ beads with a particle size of 20 μm. The immobilized enzymes recycle L-glutamate by oxidation to 2-oxoglutarate followed by the transfer of an amino group from D-4-hydroxyphenylglycine to 2-oxoglutarate. The reaction was accompanied by reduction of nicotinamide adenine dinucleotide (NAD+) to NADH, which was monitored by fluorescence detection (εex=340 nm, εem=460 nm). First, the microchip-based system, L-glutamate was detected within a range of 3.1–50.0 mM. Second, to be automatically determined, sequential injection analysis (SIA) with the bead-based system was investigated. The bead-based system was evaluated by both flow injection analysis and SIA modes, where good reproducibility for L-glutamate calibrations was obtained (relative standard deviation of 3.3% and 6.6%, respectively). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a pH of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining. The bead-based system demonstrated high selectivity, where L-glutamate recoveries were between 91% and 108% in the presence of six other L-amino acids tested
    corecore