316 research outputs found

    Sexuality and the drive for muscularity: evidence of associations among British men

    Get PDF
    Previous studies have documented associations between sexuality and body image, but the directionality of this association is unclear among men. This study examined whether men's drive for muscularity can be considered a correlate of their sexuality. A community-based sample of 292 heterosexual men from London, UK, completed a survey consisting of measures of drive for muscularity, sociosexuality, sexual assertiveness, sexual esteem, and sexual sensation seeking. A multiple regression analysis showed that greater drive for muscularity was predicted by more unrestricted sociosexuality (i.e., a greater proclivity for short-term, transient relationships), greater sexual sensation seeking, and greater sexual assertiveness, once the effects of participant age and body mass index had been accounted for. Possible avenues for intervention based on a sex-positive approach are discussed in conclusion

    A- and B-Exciton Photoluminescence Intensity Ratio as a Measure of Sample Quality for Transition Metal Dichalcogenide Monolayers

    Full text link
    The photoluminescence (PL) in monolayer transition metal dichalcogenides (TMDs) is dominated by recombination of electrons in the conduction band with holes in the spin-orbit split valence bands, and there are two distinct emission features referred to as the A-peak (ground state exciton) and B-peak (higher spin-orbit split state). The intensity ratio of these two features varies widely and several contradictory interpretations have been reported. We analyze the room temperature PL from MoS2, MoSe2, WS2, and WSe2 monolayers and show that these variations arise from differences in the non-radiative recombination associated with defect densities. Hence, the relative intensities of the A- and B-emission features can be used to qualitatively asses the non-radiative recombination, and thus the quality of the sample. A low B/A ratio is indicative of low defect density and high sample quality. Emission from TMD monolayers is governed by unique optical selection rules which make them promising materials for valleytronic operations. We observe a notably higher valley polarization in the B-exciton relative to the A-exciton. The high polarization is a consequence of the shorter B-exciton lifetime resulting from rapid relaxation of excitons from the B-exciton to the A-exciton of the valence band.Comment: Final version is published online at APL Material

    Magneto-reflection spectroscopy of monolayer transition-metal dichalcogenide semiconductors in pulsed magnetic fields

    Get PDF
    We describe recent experimental efforts to perform polarization-resolved optical spectroscopy of monolayer transition-metal dichalcogenide semiconductors in very large pulsed magnetic fields to 65 tesla. The experimental setup and technical challenges are discussed in detail, and temperature-dependent magneto-reflection spectra from atomically thin tungsten disulphide (WS2_2) are presented. The data clearly reveal not only the valley Zeeman effect in these 2D semiconductors, but also the small quadratic exciton diamagnetic shift from which the very small exciton size can be directly inferred. Finally, we present model calculations that demonstrate how the measured diamagnetic shifts can be used to constrain estimates of the exciton binding energy in this new family of monolayer semiconductors.Comment: PCSI-43 conference (Jan. 2016; Palm Springs, CA

    Exciton Diamagnetic Shifts and Valley Zeeman Effects in Monolayer WS2_2 and MoS2_2 to 65 Tesla

    Get PDF
    We report circularly-polarized optical reflection spectroscopy of monolayer WS2_2 and MoS2_2 at low temperatures (4~K) and in high magnetic fields to 65~T. Both the A and the B exciton transitions exhibit a clear and very similar Zeeman splitting of approximately −-230~μ\mueV/T (g≃−4g\simeq -4), providing the first measurements of the valley Zeeman effect and associated gg-factors in monolayer transition-metal disulphides. These results complement and are compared with recent low-field photoluminescence measurements of valley degeneracy breaking in the monolayer diselenides MoSe2_2 and WSe2_2. Further, the very large magnetic fields used in our studies allows us to observe the small quadratic diamagnetic shifts of the A and B excitons in monolayer WS2_2 (0.32 and 0.11~μ\mueV/T2^2, respectively), from which we calculate exciton radii of 1.53~nm and 1.16~nm. When analyzed within a model of non-local dielectric screening in monolayer semiconductors, these diamagnetic shifts also constrain and provide estimates of the exciton binding energies (410~meV and 470~meV for the A and B excitons, respectively), further highlighting the utility of high magnetic fields for understanding new 2D materials.Comment: 9 pages, 5 figure

    Heat content of the Arabian Sea Mini Warm Pool is increasing

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Science Letters 17 (2016): 39-42, doi:10.1002/asl.596.Sea surface temperature in the Arabian Sea Mini Warm Pool has been suggested to be one of the factors that affects the Indian summer monsoon. In this paper, we analyze the annual ocean heat content (OHC) of this region during 1993–2010, using in situ data, satellite observations, and a model simulation. We find that OHC increases significantly in the region during this period relative to the north Indian Ocean, and propose that this increase could have caused the decrease in Indian Summer Monsoon Rainfall that occurred at the same time

    Proximity-enhanced valley Zeeman splitting at the WS2_2/graphene interface

    Full text link
    The valley Zeeman physics of excitons in monolayer transition metal dichalcogenides provides valuable insight into the spin and orbital degrees of freedom inherent to these materials. Being atomically-thin materials, these degrees of freedom can be influenced by the presence of adjacent layers, due to proximity interactions that arise from wave function overlap across the 2D interface. Here, we report 60 T magnetoreflection spectroscopy of the A- and B- excitons in monolayer WS2_2, systematically encapsulated in monolayer graphene. While the observed variations of the valley Zeeman effect for the A- exciton are qualitatively in accord with expectations from the bandgap reduction and modification of the exciton binding energy due to the graphene-induced dielectric screening, the valley Zeeman effect for the B- exciton behaves markedly different. We investigate prototypical WS2_2/graphene stacks employing first-principles calculations and find that the lower conduction band of WS2_2 at the K/K′K/K' valleys (the CB−CB^- band) is strongly influenced by the graphene layer on the orbital level. This leads to variations in the valley Zeeman physics of the B- exciton, consistent with the experimental observations. Our detailed microscopic analysis reveals that the conduction band at the QQ point of WS2_2 mediates the coupling between CB−CB^- and graphene due to resonant energy conditions and strong coupling to the Dirac cone. Our results therefore expand the consequences of proximity effects in multilayer semiconductor stacks, showing that wave function hybridization can be a multi-step process with different bands mediating the interlayer interactions. Such effects can be exploited to resonantly engineer the spin-valley degrees of freedom in van der Waals and moir\'e heterostructures.Comment: 14 pages, 6 figures, 3 table

    Crummer SunTrust Portfolio Recommendations: Crummer Investment Management [2016]

    Get PDF
    The most notable aspect of our strategy is an increase in bond holdings to 18% — the top of the range permitted by our investment policy statement. This defensive position assumes bonds will be low risk in a year of gently rising interest rates and because we see little upside in the stock market. For our tactical allocation, we added sector ETFs to each of our sectors to ensure diversification within sectors and limited the individual names to three per sector, allowing for more selectivity and in-depth research. We have tilted the portfolio towards consumer discretionary, consumer staples and telecommunications, last year’s best performing sectors, because they are favored in less than robust economies
    • …
    corecore