12 research outputs found

    Plastiques biosourcés et/ou biodégradables en fin de vie - Conditions et conséquences sur leur valorisation dans lesfilières actuelles de valorisation des déchets

    No full text
    The industrial demand for biosourced plastics is increasing because of the need to develop a societythat is less dependent on fossil resources. New products are developed to meet the demand forproduction of consumer goods and equipment as well as to meet regulatory and societal demands.Diversification of bioplastics requires consideration of their integration into current (and future)processes for the treatment and recovery of solid waste: mechanical recycling, chemical recycling,biological recovery of material and / or energy (composting, anaerobic digestion). Based on a detailedreview of the scientific and technical literature, as well as feedback from industrial experiments, thisstudy aims at identifying the consequences of the presence of bioplastics in the solid waste treatmentsectors and to identify research and development issues favoring their effective integration intocurrent and future value chains of circular resources.La demande industrielle de plastiques biosourcés et/ou biodégradables augmente au fil de la prise deconscience de la nécessité de développer une société moins dépendante des ressources fossiles. Denouveaux produits sont développés pour répondre à la demande de production de biens deconsommation et d’équipement, tout en satisfaisant les exigences réglementaires et sociétales. Ladiversification des matières plastiques nécessite de prendre en considération leur intégration dans lesfilières actuelles de traitement et de valorisation des déchets solides : filières de recyclage mécanique,filières biologiques de valorisation matière et/ou énergie (compostage, méthanisation) et filièrespouvant être amenées à se développer en se basant sur du recyclage chimique et biochimique. Baséesur une revue détaillée de la littérature scientifique et technique, de retours d’expériencesindustrielles, cette étude a pour objectif d’identifier les conséquences de la présence de plastiquesbiosourcés dans les filières de traitement des déchets solides citées ci-dessus. Il conviendra de cernerles enjeux de recherche et développement technologique favorisant leur intégration effective dans lesfilières actuelles et futures de valorisation circulaire des ressources

    Influence of an ethylene-octene copolymer and of pollutants in (PP/EPR) blends

    No full text
    International audienceThe objective of this work was to study the effectiveness of commercial compatibilizers (E-EA-MAH copolymer) on the morphology of blends of polypropylene/ethylene polypropylene rubber (PP/EPR) (78/22) and metallocenic ethylene-octene copolymer (EOC) polluted by (poly (vinyl chloride) (PVC) and by an oil for engine. Blends of various compositions (with and without compatibilizer or pollutant), were prepared using a corotating twin-screw extruder. In both cases, the analyses of blend morphologies highlighted the poor adherence between the two phases in the uncompatibilized blends. Compatibilized polluted blends display better adherence between phases. Dynamic mechanical thermal analysis and differential scanning calorimetry show that the compatibilizer improves the adhesion between both phases and enables stress transfer at the interface

    Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization

    No full text
    International audienceAerobic and anaerobic biodegradation of four different kinds of polymers, polylactic acid, polycaprolactone, a starch/polycaprolactone blend (Mater-bi®) and poly(butadiene adipate-co-terephthalate) (Eastar bio®) has been studied in the solid state under aerobic conditions and in the liquid phase under both aerobic and anaerobic conditions.Several standard test methods (ISO 14851, ISO 14853, ASTM G 21-90 and ASTM G 22-76 and NF X 41-514) were used to determine the biodegradability. To determine the efficiency of the biodegradation of polymers, quantitative (mass variations, oxygen uptake, pressure variations, biogas generation and composition, biodegradation percentages) and qualitative (variation of Tg and Tf, variation of molar mass by SEC, characterization by FTIR and NMR spectroscopy) analyses were made and materials were characterized before and after 28 days of degradation.After 28 days, the degradation of materials depends on the material and on the test conditions used. The degradation is better under aerobic conditions, in particular for Mater-bi and polycaprolactone. Nevertheless, we can notice that it is the amorphous part of the polymer which is more attacked by the micro-organisms but, after 28 days, they do not seem to cleave macromolecules inside the material: bacteria attack the surface of the polymer and seem to consume the macromolecules one after another (there is no significant variation in the molar mass and no difference between FTIR and NMR spectra before degradation and after 28 days of degradation)
    corecore