4 research outputs found

    Clinical Risk Factors Associated with Anti-Epileptic Drug Responsiveness in Canine Epilepsy

    Get PDF
    The nature and occurrence of remission, and conversely, pharmacoresistance following epilepsy treatment is still not fully understood in human or veterinary medicine. As such, predicting which patients will have good or poor treatment outcomes is imprecise, impeding patient management. In the present study, we use a naturally occurring animal model of pharmacoresistant epilepsy to investigate clinical risk factors associated with treatment outcome. Dogs with idiopathic epilepsy, for which no underlying cause was identified, were treated at a canine epilepsy clinic and monitored following discharge from a small animal referral hospital. Clinical data was gained via standardised owner questionnaires and longitudinal follow up data was gained via telephone interview with the dogs’ owners. At follow up, 14% of treated dogs were in seizure-free remission. Dogs that did not achieve remission were more likely to be male, and to have previously experienced cluster seizures. Seizure frequency or the total number of seizures prior to treatment were not significant predictors of pharmacoresistance, demonstrating that seizure density, that is, the temporal pattern of seizure activity, is a more influential predictor of pharmacoresistance. These results are in line with clinical studies of human epilepsy, and experimental rodent models of epilepsy, that patients experiencing episodes of high seizure density (cluster seizures), not just a high seizure frequency pre-treatment, are at an increased risk of drug-refractoriness. These data provide further evidence that the dog could be a useful naturally occurring epilepsy model in the study of pharmacoresistant epilepsy

    A cross-species approach to disorders affecting brain and behaviour.

    No full text
    Structural and functional elements of biological systems are highly conserved across vertebrates. Many neurological and psychiatric conditions affect both humans and animals. A cross-species approach to the study of brain and behaviour can advance our understanding of human disorders via the identification of unrecognized natural models of spontaneous disorders, thus revealing novel factors that increase vulnerability or resilience, and via the assessment of potential therapies. Moreover, diagnostic and therapeutic advances in human neurology and psychiatry can often be adapted for veterinary patients. However, clinical and research collaborations between physicians and veterinarians remain limited, leaving this wealth of comparative information largely untapped. Here, we review pain, cognitive decline syndromes, epilepsy, anxiety and compulsions, autoimmune and infectious encephalitides and mismatch disorders across a range of animal species, looking for novel insights with translational potential. This comparative perspective can help generate novel hypotheses, expand and improve clinical trials and identify natural animal models of disease resistance and vulnerability

    A cross-species approach to disorders affecting brain and behaviour

    No full text
    corecore