23 research outputs found

    Anatomical landmarks for ankle block

    No full text
    Abstract We aimed to describe anatomical landmarks to accurately locate the five nerves that are infiltrated to accomplish anaesthesia of the foot in an ankle block. Twenty-four formaldehyde-fixed cadaveric ankles were studied. Photographs of cross sections of the frozen legs, cut at a horizontal plane across the most prominent points of the medial and lateral malleoli, were analysed. The curvilinear distance from the most prominent point of the closest malleolus to each of the five cutaneous nerves and their depth from the skin surface were measured. Sural, tibial, deep peroneal, saphenous and medial dorsal cutaneous nerves were located 5.2 ± 1.3, 9.2 ± 2.4, 7.4 ± 1.9, 2.8 ± 1.1, 2.1 ± 0.6 mm deep to the skin surface. The curvilinear distances from the medial malleolus to the tibial, deep peroneal and saphenous nerves were 32.5 ± 8.9, 62.8 ± 11.1 and 24.4 ± 7.9 mm, respectively. The curvilinear distances from the lateral malleolus to the sural and medial dorsal cutaneous branches of superficial peroneal nerves were 27.9 ± 6.3 and 52.7 ± 7.3 mm, respectively. The deep peroneal nerve was found between the tendons of the extensor hallucis longus and the extensor digitorum longus in the majority of specimens, while the medial dorsal cutaneous nerve was almost exclusively found on the extensor digitorum longus tendon. The sural and tibial nerves were located around halfway between the most prominent point of the relevant malleolus and the posterior border of the Achilles tendon. In conclusion, this study describes easily identifiable, palpable bony and soft tissue landmarks that could be used to locate the nerves around the ankle

    Unsteady flamelet/progress variable approach for non-premixed turbulent lifted flames

    No full text
    This article was accepted for publication in the journal, Химическая физика / Khimicheskaya Fizika / Russian Journal of Physical Chemistry. The final publication is available at www.springerlink.com.The unsteady flamelet/progress variable approach has been developed for the prediction of a lifted flame to capture the extinction and re-ignition physics. In this work inclusion of the time variant behavior in the flamelet generation embedded in the large eddy simulation technique, allows better understanding of partially premixed flame dynamics. In the process sufficient simulations to generate unsteady laminar flamelets are performed, which are a function of time. These flamelets are used for the generation of the look-up table and the flamelet library is produced. This library is used for the calculation of temperature and other species in the computational domain as the solution progresses. The library constitutes filtered quantities of all the scalars as a function of mean mixture fraction, mixture fraction variance and mean progress variable. Mixture fraction and progress variable distributions are assumed to be β-PDF and -PDF respectively. The technique used here is known as the unsteady flamelet progress variable (UFPV) approach. One of the well known lifted flames is considered for the present modeling which shows flame lift-off. The results are compared with the experimental data for the mixture fraction and temperature. Lift off height is predicted from the numerical calculations and compared with the experimentally given value. Comparisons show a reasonably good agreement and the UFPV combustion model appear to be a promising technique for the prediction of lifted and partially premixed flames

    Identification and analysis of instability in non-premixed swirling flames using LES

    Get PDF
    Large eddy simulations (LES) of turbulent non-premixed swirling flames based on the Sydney swirl burner experiments under different flame characteristics are used to uncover the underlying instability modes responsible for the centre jet precession and large scale recirculation zone. The selected flame series known as SMH flames have a fuel mixture of methane-hydrogen (50:50 by volume). The LES solves the governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modelling based on the localised dynamic Smagorinsky model and the steady laminar flamelet model respectively. The LES results are validated against experimental measurements and overall the LES yields good qualitative and quantitative agreement with the experimental observations. Analysis showed that the LES predicted two types of instability modes near fuel jet region and bluff body stabilized recirculation zone region. The Mode I instability defined as cyclic precession of a centre jet is identified using the time periodicity of the centre jet in flames SMH1 and SMH2 and the Mode II instability defined as cyclic expansion and collapse of the recirculation zone is identified using the time periodicity of the recirculation zone in flame SMH3. Finally frequency spectra obtained from the LES are found to be in good agreement with the experimentally observed precession frequencies
    corecore