1,820 research outputs found
Ultracold atom-molecule collisions with fermionic atoms
Elastic and inelastic properties of weakly bound s- and p-wave molecules of
fermionic atoms that collide with a third atom are investigated. Analysis of
calculated collisional properties of s-wave dimers of fermions in different
spin states permit us to compare and highlight the physical mechanisms that
determine the stability of s-wave and p-wave molecules. In contrast to s-wave
molecules, the collisional properties of p-wave molecules are found to be
largely insensitive to variations of the p-wave scattering length and that
these collisions will usually result in short molecular lifetimes. We also
discuss the importance of this result for both theories and experiments
involving degenerate Fermi gases.Comment: 6 pages, 2 figure
Low-energy three-body dynamics in binary quantum gases
The universal three-body dynamics in ultra-cold binary Fermi and Fermi-Bose
mixtures is studied. Two identical fermions of the mass and a particle of
the mass with the zero-range two-body interaction in the states of the
total angular momentum L=1 are considered. Using the boundary condition model
for the s-wave interaction of different particles, both eigenvalue and
scattering problems are treated by solving hyper-radial equations, whose terms
are derived analytically. The dependencies of the three-body binding energies
on the mass ratio for the positive two-body scattering length are
calculated; it is shown that the ground and excited states arise at and ,
respectively. For m/m_1 \alt \lambda_1 and m/m_1 \alt \lambda_2, the
relevant bound states turn to narrow resonances, whose positions and widths are
calculated. The 2 + 1 elastic scattering and the three-body recombination near
the three-body threshold are studied and it is shown that a two-hump structure
in the mass-ratio dependencies of the cross sections is connected with arising
of the bound states.Comment: 16 page
Mechanism of Reconnection on Kinetic Scales Based on Magnetospheric Multiscale Mission Observations
We examine the role that ions and electrons play in reconnection using observations from the Magnetospheric Multiscale (MMS) mission on kinetic ion and electron scales, which are much shorter than magnetohydrodynamic scales. This study reports observations with unprecedented high resolution that MMS provides for magnetic eld (7.8 ms) and plasma (30 ms for electrons and 150 ms for ions). We analyze and compare approaches to the magnetopause in 2016 November, to the electron diffusion region in the magnetotail in 2017 July followed by a current sheet crossing in 2018 July. Besides magnetic eld reversals, changes in the direction of the ow velocity, and ion and electron heating, MMS observed large uctuations in the electron ow speeds in the magnetotail. As expected from numerical simulations, we have veried that when the eld lines and plasma become decoupled a large reconnecting electric eld related to the Hall current (110 mV/m) is responsible for fast reconnection in the ion diffusion region. Although inertial accelerating forces remain moderate (12 mV/m), the electric elds resulting from the divergence of the full electron pressure tensor provide the main contribution to the generalized Ohms law at the neutral sheet (as large as 200 mV/m). In our view, this illustrates that when ions decouple electron physics dominates. The results obtained on kinetic scales may be useful for better understanding the physical mechanisms governing reconnection processes in various magnetized laboratory and space plasmas
Calculation of resonances in the Coulomb three-body system with two disintegration channels in the adiabatic hyperspherical approach
The method of calculation of the resonance characteristics is developed for
the metastable states of the Coulomb three-body (CTB) system with two
disintegration channels. The energy dependence of K-matrix in the resonance
region is calculated with the use of the stabilization method. Resonance
position and partial widths are obtained by fitting the numerically calculated
K(E)-matrix with the help of the generalized Breit-Wigner formula.Comment: Latex, 11 pages with 5 figures and 2 table
Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. I. Level dynamics
We investigate the evolution of quantal spectra and the corresponding wave
functions along the [O(6)-U(5)]O(5) transition of the interacting
boson model. The model is integrable in this regime and its ground state passes
through a second-order structural phase transition. We show that the whole
spectrum as a function of the Hamiltonian control parameter, as well as
structures of all excited states, exhibit rather organized and correlated
behaviors, that provide deeper insight into the nature of this transitional
path.Comment: 10 pages, 8 figure
Three-Body Halos in Two Dimensions
A method to study weakly bound three-body quantum systems in two dimensions
is formulated in coordinate space for short-range potentials. Occurrences of
spatially extended structures (halos) are investigated. Borromean systems are
shown to exist in two dimensions for a certain class of potentials. An
extensive numerical investigation shows that a weakly bound two-body state
gives rise to two weakly bound three-body states, a reminiscence of the Efimov
effect in three dimensions. The properties of these two states in the weak
binding limit turn out to be universal.
PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st
Low-Energy Universality in Atomic and Nuclear Physics
An effective field theory developed for systems interacting through
short-range interactions can be applied to systems of cold atoms with a large
scattering length and to nucleons at low energies. It is therefore the ideal
tool to analyze the universal properties associated with the Efimov effect in
three- and four-body systems. In this "progress report", we will discuss recent
results obtained within this framework and report on progress regarding the
inclusion of higher order corrections associated with the finite range of the
underlying interaction.Comment: Commissioned article for Few-Body Systems, 47 pp, 16 fig
Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions
A comprehensive universal description of the rotational-vibrational spectrum
for two identical particles of mass and the third particle of the mass
in the zero-range limit of the interaction between different particles is
given for arbitrary values of the mass ratio and the total angular
momentum . If the two-body scattering length is positive, a number of
vibrational states is finite for , zero for
, and infinite for . If the two-body scattering
length is negative, a number of states is either zero for or
infinite for . For a finite number of vibrational states, all the
binding energies are described by the universal function , where ,
,and is the vibrational
quantum number. This scaling dependence is in agreement with the numerical
calculations for and only slightly deviates from those for .
The universal description implies that the critical values and
increase as and ,
respectively, while a number of vibrational states for is
within the range
PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites
PHOSIDA, a phosphorylation site database, integrates thousands of phosphosites identified by proteomics in various species
- …