9,634 research outputs found

    Small oscillations and the Heisenberg Lie algebra

    Full text link
    The Adler Kostant Symes [A-K-S] scheme is used to describe mechanical systems for quadratic Hamiltonians of R2n\mathbb R^{2n} on coadjoint orbits of the Heisenberg Lie group. The coadjoint orbits are realized in a solvable Lie algebra g\mathfrak g that admits an ad-invariant metric. Its quadratic induces the Hamiltonian on the orbits, whose Hamiltonian system is equivalent to that one on R2n\mathbb R^{2n}. This system is a Lax pair equation whose solution can be computed with help of the Adjoint representation. For a certain class of functions, the Poisson commutativity on the coadjoint orbits in g\mathfrak g is related to the commutativity of a family of derivations of the 2n+1-dimensional Heisenberg Lie algebra hn\mathfrak h_n. Therefore the complete integrability is related to the existence of an n-dimensional abelian subalgebra of certain derivations in hn\mathfrak h_n. For instance, the motion of n-uncoupled harmonic oscillators near an equilibrium position can be described with this setting.Comment: 17 pages, it contains a theory about small oscillations in terms of the AKS schem

    Stripe to spot transition in a plant root hair initiation model

    Get PDF
    A generalised Schnakenberg reaction-diffusion system with source and loss terms and a spatially dependent coefficient of the nonlinear term is studied both numerically and analytically in two spatial dimensions. The system has been proposed as a model of hair initiation in the epidermal cells of plant roots. Specifically the model captures the kinetics of a small G-protein ROP, which can occur in active and inactive forms, and whose activation is believed to be mediated by a gradient of the plant hormone auxin. Here the model is made more realistic with the inclusion of a transverse co-ordinate. Localised stripe-like solutions of active ROP occur for high enough total auxin concentration and lie on a complex bifurcation diagram of single and multi-pulse solutions. Transverse stability computations, confirmed by numerical simulation show that, apart from a boundary stripe, these 1D solutions typically undergo a transverse instability into spots. The spots so formed typically drift and undergo secondary instabilities such as spot replication. A novel 2D numerical continuation analysis is performed that shows the various stable hybrid spot-like states can coexist. The parameter values studied lead to a natural singularly perturbed, so-called semi-strong interaction regime. This scaling enables an analytical explanation of the initial instability, by describing the dispersion relation of a certain non-local eigenvalue problem. The analytical results are found to agree favourably with the numerics. Possible biological implications of the results are discussed.Comment: 28 pages, 44 figure

    Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

    Full text link
    It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock type singularities are presented.Comment: 19 page

    Langevin equation with scale-dependent noise

    Full text link
    A new wavelet based technique for the perturbative solution of the Langevin equation is proposed. It is shown that for the random force acting in a limited band of scales the proposed method directly leads to a finite result with no renormalization required. The one-loop contribution to the Kardar-Parisi-Zhang equation Green function for the interface growth is calculated as an example.Comment: LaTeX, 5 page

    Magneto-Conductance Anisotropy and Interference Effects in Variable Range Hopping

    Full text link
    We investigate the magneto-conductance (MC) anisotropy in the variable range hopping regime, caused by quantum interference effects in three dimensions. When no spin-orbit scattering is included, there is an increase in the localization length (as in two dimensions), producing a large positive MC. By contrast, with spin-orbit scattering present, there is no change in the localization length, and only a small increase in the overall tunneling amplitude. The numerical data for small magnetic fields BB, and hopping lengths tt, can be collapsed by using scaling variables B⊥t3/2B_\perp t^{3/2}, and B∥tB_\parallel t in the perpendicular and parallel field orientations respectively. This is in agreement with the flux through a `cigar'--shaped region with a diffusive transverse dimension proportional to t\sqrt{t}. If a single hop dominates the conductivity of the sample, this leads to a characteristic orientational `finger print' for the MC anisotropy. However, we estimate that many hops contribute to conductivity of typical samples, and thus averaging over critical hop orientations renders the bulk sample isotropic, as seen experimentally. Anisotropy appears for thin films, when the length of the hop is comparable to the thickness. The hops are then restricted to align with the sample plane, leading to different MC behaviors parallel and perpendicular to it, even after averaging over many hops. We predict the variations of such anisotropy with both the hop size and the magnetic field strength. An orientational bias produced by strong electric fields will also lead to MC anisotropy.Comment: 24 pages, RevTex, 9 postscript figures uuencoded Submitted to PR

    Nonadiabatic charged spherical evolution in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in General Relativity. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstr\"om exterior solution. Two models are considered: i) a Schwarzschild-like shell in the diffusion limit; ii) a Schwarzschild-like interior in the free streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.Comment: 11 pages, 16 Figures. Accepted for publication in Phys Rev
    • …
    corecore