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STRIPE TO SPOT TRANSITION IN A PLANT ROOT HAIR INITIATION MODEL

V.F. BREÑA–MEDINA, D. AVITABILE, A.R. CHAMPNEYS, M.J. WARD

Abstract. A generalised Schnakenberg reaction-diffusion system with source and loss terms and a spatially dependent coefficient of the
nonlinear term is studied both numerically and analytically in two spatial dimensions. The system has been proposed as a model of hair
initiation in the epidermal cells of plant roots. Specifically the model captures the kinetics of a small G-protein ROP, which can occur in
active and inactive forms, and whose activation is believed to be mediated by a gradient of the plant hormone auxin. Here the model is made
more realistic with the inclusion of a transverse co-ordinate. Localised stripe-like solutions of active ROP occur for high enough total auxin
concentration and lie on a complex bifurcation diagram of single and multi-pulse solutions. Transverse stability computations, confirmed
by numerical simulation show that, apart from a boundary stripe, these 1D solutions typically undergo a transverse instability into spots.
The spots so formed typically drift and undergo secondary instabilities such as spot replication. A novel 2D numerical continuation analysis
is performed that shows the various stable hybrid spot-like states can coexist. The parameter values studied lead to a natural singularly
perturbed, so-called semi-strong interaction regime. This scaling enables an analytical explanation of the initial instability, by describing the
dispersion relation of a certain non-local eigenvalue problem. The analytical results are found to agree favourably with the numerics. Possible
biological implications of the results are discussed.

1. Introduction. An earlier paper [4] by three of the present authors along with Grierson analysed a mathematical

model first derived by Payne and Grierson [25] for a prototypical morphogenesis occurring at a sub-cellular level. Specif-

ically, the model accounts for the kinetics of a family of small G-proteins known collectively as the rho-proteins of plants,

or ROPs for short. The model is intended to describe the observed initiation of hair-like protrusions in the epidermal

cells of the roots of the model plant Arabidopsis thaliana (see [11, 12] and other references in [4] for details). The hairs

themselves are crucial for anchorage and for nutrient uptake, and when fully formed comprise the majority of the surface

area of the plant. In wild type, a single hair is formed in each root hair cell, at a set distance about 20% of the way along

the cell from its basal end (i.e. end closest to root tip). The formation of a single localised patch of activated ROP is

the precursor for such a strong symmetry breaking in the cell and is triggered as a newly formed root hair cell reaches a

critical length. At the same time, the overall concentration of the pre-eminent plant hormone auxin increases throughout

the cell and, due to the nature of how it is actively pumped, there is a gradient of auxin from high concentrations at the

basal end to lower at the apical. The effect of auxin is postulated to account for a spatially-dependent gradient of the

activation of the ROP.

In [4] many features of the root hair initiation process were shown to be captured by the model. The spatial domain

of the long, thin root-hair cell was approximated by a one-dimensional spatial domain with the diffusion of the activated

ROP being much slower, accounting for the fact that this form is bound to the membrane whereas inactivated ROP

is free to diffuse within the cell. In particular, it was found that for small cell lengths and low auxin concentrations

the active ROP is confined to a boundary patch. There is then a critical threshold in length and/or auxin for which a

single interior patch forms. This process is hysteretic, in that if auxin-levels were instantaneously decreased, the patch

would remain. Moreover, if auxin or cell length are decreased too rapidly a second instability can occur, resulting in

the formation of multiple-patch states. These states appear to capture the pattern of root hairs seen in several mutant

varieties. The purpose of this paper is to see how those results survive in a more realistic geometry.

The model in question takes the form of a two-component reaction-diffusion (RD) system that can be written in

dimensionless form as

Ut = ε2∆sU + α(x)U2V − U +
1

τγ
V , (1.1a)

τVt = D∆sV − V + 1− τγ
(
α(x)U2V − U

)
− βγU . (1.1b)

In dimensionless form the model is posed on a square (x, y) ∈ Ω ≡ [0, 1] × [0, 1], which has been rescaled from

a rectangular domain Ω̃ ≡ [0, Lx] × [0, Ly] with Lx = 20µm and aspect ratio s = (Lx/Ly)2 = 5.5, so that in (1.1)
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Fig. 1.1: Sketch of an idealised 3D RH cell, and cell membrane (densely dashed lines) projection onto a 2D rectangular domain.
The longitudinal auxin gradient is shown (grey shade) as a consequence of in- (bold solid arrows) and out pump (dashed
arrows) mechanisms; see [10, 11, 18]. Influx and efflux permeabilities are depicted by Pi and Pe arrows respectively; auxin
symplastic pathway is indicated by bold arrows in the 3D RH cell. Switching fluctuation is represented by blank-cusp
solid arrows in Ω̃.

we have defined ∆s ≡ ∂xx + s∂yy. From now onwards, this operator will be considered as such. The biochemical

interaction this system models is for a ROP bounding on-and-off switching fluctuation, which is assumed to take place

on the cell membrane (see [4, 25]), and RH cells are flanked by non-RH cells, from which no ROPs exchange have been

reported, as far as we have knowledge. Thus, homogeneous Neumann boundary conditions are assumed everywhere. The

quantities U(x, y, t) and V (x, y, t) represent concentrations of the membrane-bound active ROP and unbound inactive

ROP respectively and α(x) represents a monotone decreasing gradient of auxin, which is assumed to be at steady state

and to vary only in the x direction. In particular, in this work we shall assume that

α(x) = e−νx with ν = 1.5 ,

which can be thought of as the outcome of a steady leaky diffusion process within the cell. A sketch of an idealised 3D

RH cell and its cell membrane projection onto Ω̃ can be seen in Fig. 1.1. Other dimensionless parameters are defined in

terms of original parameters via

ε2 ≡ D1

L2
x(c+ r)

, D ≡ D2

L2
xk1

, τ ≡ c+ r

k1
, β ≡ r

k1
, (1.2a)

and the primary bifurcation parameter γ in this system is given by

γ ≡ (c+ r)k2
1

k2b2
. (1.2b)

Here D1 � D2 are the diffusion constants for U and V respectively, b is the rate of production of inactive ROP, c is

the rate constant for deactivation, r is the rate constant describing active ROPs being used up in cell wall softening

and subsequent hair formation, and the active activation step is assumed to be proportional to k1V + k2α(x)U2V . The

activation and overall auxin level within the cell, which is autocatalytic acceleration induced by auxins, is represented

by k1 and k2 respectively. The latter parameter plays an important role in some numerical investigations here, due to

gathering the main biological hypothesis in the model. See [4, 25] for more details.

The results in [4] concern a 1D domain in which s =∞ and the 2D Laplacian is replaced by d2/dx2. In this paper

we shall extend the 1D analysis of [4] to study patterns in 2D. By trivially extending the 1D localised spikes, in the
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transverse direction, a localised stripe pattern is obtained. Our main goal is to study whether these stripe patterns are

stable to 2D transverse perturbations, and to shed light on any secondary instabilities that occur. In particular we would

like to see the extent to which a single interior circular patch of ROP is the preferred solution for sufficiently high auxin

concentration, as this would be a more accurate description of the biological process we seek to describe.

Spatially homogeneous RD systems similar to (1.1), but without the spatial inhomogeneity, have been studied

extensively by a number of authors. In 2D domains, patterns such as spots and stripes have been found both numerically

and analytically and their dynamics uncovered. In particular the so-called Gierer–Meinhardt system [8, 13, 20] admits

a wide collection of spot and stripe patterns. Richer dynamics that also include spot oscillations, snaking-bifurcation

diagrams, and even spatiotemporal chaos can occur for the so-called BVAM system [1] and the Gray–Scott system [23, 24]

among others. Such RD systems arise as descriptions of pigmentation patterns on the skin of fish and as models of other

chemical and biological pattern formation systems (see for example the book by Murray [22] for an overview).

In a similar singularly perturbed limit, Doelman & van der Ploeg [7] and Kolokolnikov & Ward [16] have undertaken

a theoretical analysis of the transverse stability of an interior localised stripe for the Gierer–Meinhardt model (for a

similar analysis for the Gray–Scott model see [17, 21]). A novel feature of the present work is to adapt these analyses to

the case of a model with a spatial gradient, and to extend the analysis to include boundary stripes.

Our study of (1.1) relies on a combination of numerical and analytical methodologies. Firstly, time-dependent

numerical simulations of the PDE system together with numerical computations of the eigenvalue problem associated

with transverse perturbations are used to show that, generally, interior or boundary stripes are unstable to transverse

perturbations. This instability leads to the formation of localised spots. Our numerical results show that the spots

drift in the direction of the auxin gradient, and can undergo a secondary instability of spot self-replication. Numerical

bifurcation techniques in 2D are then used to compute intricate bifurcation diagrams associated with steady-state spot

patterns, stripe patterns, and mixed-states consisting of a stripe and spots.

The outline of the paper is outlined as follows. In §2 we perform full numerical simulations and detailed numerical

bifurcation analyses using parameter set one in Table 1.1. In addition, we numerically compute dispersion relations for

several scenarios. Then, in §3 we perform further simulations revealing a plethora of patterns, similar to those that have

been observed in time-dependent shape changing domains for other RD systems, see e.g. [26]. In the singularly perturbed

limit ε → 0, in §4 a non-local eigenvalue problem (NLEP) is derived and analyzed in order to determine theoretical

properties of the dispersion relation associated with the transverse stability of both an interior and a boundary stripe. The

analytical results from this stability theory are found to agree favourably with results from numerical simulations. Finally,

in §5, some concluding remarks are given, including possible biological interpretations of our results, and suggestions for

further work are given.

2. Numerical investigation. We first present numerical computations that show stripe instabilities for the ROP

model (1.1) with parameter set one given in Table 1.1, which are equivalent to those used in [25]. In terms of the operator

∆s ≡ ∂xx + s∂yy where s = (Lx/Ly)2 as is defined in §1, we recast (1.1) as

∂t

[
U
V

]
= D

[
∆s 0
0 ∆s

] [
U
V

]
+

[
f(U, V, x)
g(U, V, x)

]
, (x, y) ∈ Ω ; ∇nU = ∇nV = 0 , (x, y) ∈ ∂Ω . (2.1)

Here D is a diagonal diffusion matrix, n is the normal to ∂Ω at (x, y) and where we have omitted the dependence

on control parameters for simplicity. We present two types of computation: time-dependent simulation of (2.1) and

numerical continuation of the corresponding steady states. Implementation details are given in §2.3.
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Parameter set:

One Two Three

Original Re-scaled Original Re-scaled Original Re-scaled

D1 = 0.1 ε2 = 3.6×10−4 D1 = 0.1 ε2 = 2.3×10−5 D1 = 0.075 ε2 = 1.02×10−4

D2 = 10 D = 0.4 D2 = 50 D = 0.5 D2 = 20 D = 0.51
k1 = 0.01 τ = 11 k1 = 0.01 τ = 44 k1 = 0.008 τ = 18.75
b = 0.01 β = 1 b = 0.005 β = 4 b = 0.008 β = 6.25
c = 0.1 c = 0.4 c = 0.1
r = 0.01 r = 0.04 r = 0.05
k2 ∈ [0.01, 1.0] γ ∈ [11, 0.11] k2 ∈ [0.045, 40] γ ∈ [39.1, 0.04] k2 ∈ [10−3, 2.934] γ ∈ [150, 0.051]
Lx = 50 Lx = 100 Lx = 70

Ly = 20 s = 6.25 Ly = 29.848 s = 5.5

Table 1.1: Three parameter sets in the original and dimensionless re-scaled variables. The fundamental units of length and time
are µm and sec, and concentration rates are measured by an arbitrary datum (con) per time unit; k2 is measured by
con2/s, and diffusion coefficients units are µm/s2.
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Fig. 2.1: Snapshots of a travelling front breaking up into a slowly travelling spot that gets pinned after a long time. (a) Front
formed at the boundary. (b) Breakup into a peanut-shaped form. (c) Travelling spot. (d) Final pinned spot. Original
parameter set one as given in Table 1.1 with k2 = 0.1. Notice that the spot drifts very slowly in time.

2.1. Simulations. As initial conditions for our time-dependent computations, we take a small random perturbation

to

U0 ≡
1

γβ
, V0 ≡

τβγ

τ + β2γ
,
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Fig. 2.2: Snapshots of two stripes breaking up into an asymmetrical array of spots. (a) Early localised stripes. (b)-(c) Stripes
breaking apart, counterclockwise rotation and travelling peanut-form. (d) A pinned spot-like pattern. Original parameter
set one as given in Table 1.1 with k2 = 0.4.

which is an equilibrium to the homogeneous problem with α(x) ≡ 1. As shown below, the monotonically decreasing

auxin gradient α(x), which is largest at x = 0, has a strong influence on the dynamics. For k2 = 0.1, full numerical

results of the solution at different times are shown in Fig. 2.1. As time increases, a front is formed at the boundary. This

front, resembling a boundary stripe (see Fig. 2.1(a)), then travels towards the right where the auxin gradient is smaller.

The stripe breaks up into a transitory “peanut-shape” [23] (see Fig. 2.1(b)), which then slowly drifts towards the right

boundary. The spot ultimately gets pinned at some distance from the right boundary, as shown in Fig. 2.1(d). From this

simulation, as similarly observed in the 1D case in [4], there exists a separation of spatial and temporal scales. There

are two spatial scales, one local and one global, for the U -concentration. Moreover, there is one time-scale associated

with the quick destabilization of the boundary stripe into a spot, referred to as a breakup instability, and a second

much longer time-scale associated with the slowly drifting spot. Although some aspects of the spatio-temporal scales are

inherited from the 1D case analyzed in [4], the 1D theory cannot capture the stripe breakup nor the formation, drift,

and pinning of the localised spot.

To investigate how the bifurcation parameter k2 affects the dynamics we increase this parameter to k2 = 0.4. The

initial conditions for the time-dependent computations are the same as above for k2 = 0.1. The numerical results at

different times are shown in Fig. 2.2. In Fig. 2.2(a) a stripe-like state is formed at the boundary, with a second stripe
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quickly emerging further towards the interior. Then, as these structures move away from each other, both stripes break

up into two half-spots at the boundary and a counter-clockwise rotating peanut form, as shown in Figures 2.2(b)–2.2(c).

This structure then aligns itself longitudinally and drifts slowly towards the right (see Fig. 2.2(d)).

In other singularly perturbed RD systems, localised structures can exist in regions where the nonlinear terms domi-

nate (cf. [31]). In addition, since the system (1.1) is somewhat similar in form to both the Schnakenberg and Brusselator

systems, we expect that both spot and self-replicating spot patterns can occur (cf. [15] and [28]). The 2D simulations

shown above suggest that O(1) time-scale instabilities are associated with the formation of localised spots from a stripe.

This type of breakup instability is analysed mathematically in §4 in a particular asymptotic limit.

2.2. Bifurcation diagram for stripes. To gain further insight into the existence and stability of stripes, we

perform a numerical bifurcation analysis of stripe solutions using k2 as the main bifurcation parameter. Stripes are

stationary solutions (us(x; y), vs(x; y))T to (2.1) that are constant in y. Hence, they satisfy the 1D boundary-value

problem

D

[
∂xx 0
0 ∂xx

] [
us
vs

]
+

[
f(us, vs, x)
g(us, vs, x)

]
= 0 , x ∈ (0, 1) ; ∂xus = ∂xvs = 0 , x = 0, 1 . (2.2)

To see this, notice that a parametric exploration of the 1D problem was performed previously (see Fig. 6 in [4]) and

solutions to the 1D system can be trivially extended in y. In other words, let (us(x), vs(x))T a steady solution of (2.2),

in such fashion that extended solutions (us(x; y), vs(x; y))T = (us(x), vs(x))T , where y is seen as a parameter providing

the trivial extension. Which implies that us(x; y) and vs(x; y) are also solutions of (2.2). Therefore, the bifurcation

diagram of such solutions is entirely equivalent to Fig. 6 in [4]. However, the stability properties become dependent on

perturbations in the y-direction. This can be seen as follows. We introduce

Ũ = us + eλt+imyϕ(x) , Ṽ = vs + eλt+imyψ(x) , (2.3)

where ϕ,ψ � 1. The wavenumber m is determined by the homogeneous Neumann boundary conditions at y = 0, 1.

We thus require m = kπ for k ∈ Z, and the perturbation takes the form <(eimy) = cos (kπy). Upon substituting (2.3)

into (2.1), we obtain the eigenvalue problem

λ

[
ϕ
ψ

]
=

[
ε2∂xx − sm2 + fU (us, vs, x) fV (us, vs, x)

gU (us, vs, x) (D/τ)∂xx − sm2 + gV (us, vs, x)

] [
ϕ
ψ

]
. (2.4)

Thus, we compute stripes numerically as solutions to (2.2) and then study their linear stability by solving (2.4).

For the original parameter set one as given in Table 1.1, the bifurcation diagram for stripes is depicted in Fig. 2.3(a).

We use the L2-norm of the active component U for a fixed value of y as a solution measure. We find patterns with one

boundary stripe (A), one interior stripe (B), one boundary and one interior stripe (C), and two interior stripes (D). All

the solution branches, apart from a small segment (bold line), are unstable. Even so, as ε2 is directly proportional to

D1, the stable extended pattern branch (solid black curve ends in Fig. 2.3(a)) becomes unstable as D1 decreases. Even

though the nature of this instability will be analysed thoroughly in §4, this gives an insight on the asymptotic limit, i.e.

sharper boundary stripes are unstable. To shed light on this, upon selecting a solution from the stable stripe-branch

as initial condition, we perform continuation on D1. As can be seen in Fig. 2.3(b), there is a small critical value at

which boundary stripe solutions become unstable. In addition, we run a time-step simulation upon taking an unstable

boundary stripe solution (labelled by b) as the initial condition. This computation shows the triggering of a break-up

instability, which then gives rise to two spots moving towards domain interior. In Fig. 2.4 we give pertinent snapshots

where the boundary stripe disintegrating into spots can be seen, as well as spot dynamics for short times. The transition
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Fig. 2.3: (a) Comparison of bifurcation diagrams between localised stripes and 1D-spike scenarios. Bold dashed portions of the
diagram indicate where stable 1D solutions are unstable to transverse instabilities. A narrow stable window is found,
given by the solid black curve. (b) Bifurcation diagram as D1 varies from a solution in stable-stripe branch shown in (a);
k2 = 0.0463. An eigenvalue crosses into the right-hand complex semi-plane at the filled black circle. Branch labelled by
a remains stable as D1 is increased further (not shown). Original parameter set one as given in Table 1.1.
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Fig. 2.4: Relevant snapshots of transversal instability for unstable boundary stripe b in Fig. 2.3(b). (a) Break up instability and
(b) two newly formed boundary spots travelling towards interior. Original parameter set one as given in Table 1.1 with
k2 = 0.0463 and D1 = 0.0492.

from a boundary stripe to spot formation occurs on an O(1) time-scale as is similarly shown in Fig. 2.1 and Fig. 2.2.

This confirms that 1D localised patterns tend to destabilise under transverse perturbations.

Moreover, the stability boundaries of the stable stripe-branch are symmetry-breaking pitchfork (Turing) bifurcation

points, characteristic of a transition between one and three solutions as the bifurcation parameter crosses a critical value

(cf. [9]). To motivate why these instabilities should occur in spite of the fact that the location of the boundary stripe

does not vary with k2, nor is there any gradient in the y-direction, one effectively finds that transverse instabilities

are inherited from the 1D homogeneous problem. This homogeneous problem is readily analysed and one finds Turing

instabilities as k2 varies (see [3] for more details). Summarising these numerical results, we have:

Result 2.1. System (1.1) is stripe-unstable under transverse perturbations. In addition, there exists two pitchfork
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Fig. 2.5: Example of a breakup instability of an interior localised stripe into one spot and two peanut-forms. (a) The stripe breaks
up into a semi-localised stripe and a spot. (b) Spot splits up. (c) Breakup of the semi-localised stripe into a peanut-form,
and spots move away from each other. (d) A spot and two peanut-forms are finally formed. Original parameter set one
as given in Table 1.1 with D1 = 0.025 and k2 = 0.15, which corresponds to a stripe location in x0 = 18.5.

bifurcation points that define a small stable boundary-stripe branch, which vanishes as D1 decreases.

To gain further insight into the type of instability for stripes, we take an interior localised stripe as initial condition

and perform a time-dependent simulation of the full PDE system. The results are shown in Fig. 2.5. We observe that

first the stripe breaks up into a spot and a “semi-stripe” set at the initial location (Fig. 2.5(a)). Then, the newly formed

spot splits (Fig. 2.5(b)) giving way to two small droplets. These two spots move away from other each while the semi-

stripe collapses into a peanut form (Fig. 2.5(c)). Finally, a spot is formed from the semi-stripe in addition to the two

peanut-forms (see Fig. 2.5(d)). Here two different instabilities are present: a breakup instability, which destabilizes the

localised stripe to form spots, and another instability that creates peanut forms from spots. We will investigate breakup

instabilities from a numerical viewpoint in §3.

2.3. Numerical Implementation. To time-step and compute steady states of (2.1), we introduce a regular grid

{(xi, yj)} of NxNy nodes covering Ω ∪ ∂Ω and form vectors U = {U(xi, yj)} and V = {V (xi, yj)}. The Laplacian

operator ∆ is approximated using second-order finite differences by forming explicitly differentiation matrices Dxx ∈
RNx×Nx, Dyy ∈ RNy×Ny for second derivatives in x and y, respectively, and combining them using Kronecker products,

L = Dxx ⊗ Iy + Ix ⊗Dyy, where Ix and Iy are Nx-by-Nx and Ny-by-Ny identity matrices, respectively. We remark

8



1 2 3 4 5 6

k

-5

0

5

10

15

20

25

ℜ(
λ
),
×1

0
−3

A

B

C
D

Fig. 3.1: Dispersion relations computed numerically for particular steady solutions marked in bifurcation diagram in Fig. 2.3; stable
boundary stripe (dot-dashed line), (A) unstable boundary stripe, (B) single interior stripe, boundary and (C) interior
stripe, and (D) two interior stripes. The dotted dispersion relation corresponds to a boundary stable solution. Original
parameter set one as given in Table 1.1.

that the sparse discrete Laplacian L incorporates boundary conditions directly in the differentiation matrices. For the

initial-boundary value problem, we set Nx = Ny = 60, or Nx = Ny = 125 and time-step the resulting discretized system

of 2NxNy nonlinear ODEs

Ẇ = D⊗
[
L 0
0 L

]
W +

[
f (W,x)
g (W,x)

]
, W = (U,V)T ,

with a second order adaptive time stepper (Matlab in-built ode23s, to which we provide the Jacobian matrix explicitly).

In our computations, the components of U and V are interleaved to minimise the Jacobian matrix bandwidth. We

continue steady states as solutions to the discretised boundary-value problem

D⊗
[
L 0
0 L

]
W +

[
f (W,x)
g (W,x)

]
= 0 ,

using the Matlab function fsolve with the default tolerance and the secant continuation code developed in [27]. The

linear stability property of steady states is determined by computing (a subset of) eigenvalues and eigenvectors of the

Jacobian matrix of the discretised linear operator in (2.4) for stripes. In 2D calculations, we compute the five eigenvalues

with the largest real part using the Matlab function eigs, whereas for stripes we determine the full spectrum with eig.

3. Stripes into spots. The numerical bifurcation analysis, initially depicted in Fig. 2.3, shows that solution

branches, arising from the 1D analysis of [4], are generally not stable stable under transverse perturbations. This feature

will be theoretically analyzed further in §4. Indeed, further computations below in Fig. 4.4 and Fig. 4.6 show that stripes

are susceptible to breakup instabilities leading to spot formation.

In order to verify that unstable solutions in Fig. 2.3 exhibit breakup, leading to spot formation, we choose a solution

from each branch, and respectively compute its dispersion relation. In Fig. 3.1 each curve is labelled accordingly to

solution kind (see also labels in Fig. 2.3): (A) unstable boundary stripe, (B) an interior stripe, (C) boundary and

interior stripe, and (D) two interior stripes. The dispersion relation for a stable boundary solution is computed, which is

shown by a dotted curve. Upon using each of these steady-states as initial conditions and performing a direct time-step

computation, we confirm that those labelled from (A) up to (D) are indeed unstable, while the solution corresponding to

the dotted curve is stable. Fig. 3.2 shows the initial creation of spots induced by breakup instabilities (top panels) and
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Fig. 3.2: Breakup instability (top panel) and final stable state solution (bottom panel) of each extended-solution kind: (a) boundary
stripe, (b) an interior stripe, (c) boundary and interior stripe, and (d) two interior stripes. Original parameter set one
as given in Table 1.1.

the final stable states (bottom panels). Although, according to the dispersion relations in Fig. 3.1, the most unstable

mode should theoretically predict the number of spots the stripe should break up into, the prediction from Fig. 3.1 is

seen to provide an over-estimate of the number of spots that are seen in the computations. This results from the choice of

the parameter set one in Table 1.1, where ε is not too small. Consequently any spots created from a breakup instability

are rather “fat” and not significantly localised. Nevertheless, it is clear from these computations that O(1) time-scale

instabilities play an important role in destabilising stripes. We remark that, for a different parameter set with a smaller ε

leading to more localised spots, in §4 we will obtain a more quantitatively favorable comparison between the theoretical

prediction of the number of spots arising from a breakup instability and that observed in full numerical simulations (see

Fig. 4.4 and Fig. 4.6 below).

In addition to breakup instabilities of a stripe, a secondary O(1) time-scale instability of spot self-replication can

also occur. This instability is evident in the transition observed in Fig. 3.2(b). From this figure, we observe that once

spots are formed from a breakup instability, there is a further self-replication instability in which each spot splits into two

small droplets near the upper and lower boundary. The ultimate location of these droplets is transversally determined

by the auxin gradient, which induces a slow drift of the droplets to their eventual steady-state locations. A further

interesting feature shown in Fig. 3.2(c), is that it is possible that only the interior stripe undergoes a breakup instability
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Fig. 3.3: Bifurcation diagram: spots and a boundary stripe. (a) Stable branches are drawn by solid lines and unstable ones by
light-grey dashed lines, and filled circles represent fold points. Stable solutions, accordingly to labels (b) up to (e), are
shown in: (b) a boundary stripe, (c) a spot in the interior and two spots at the boundary, (d) a boundary stripe, an
interior spot and two spots at the boundary, and (e) an interior spot and five spots at the boundary. Original parameter
set one as given in Table 1.1.

while the boundary stripe remains intact. This shows that a steady-state pattern consisting of both spots and stripes

can occur at the same parameter value.

3.1. A richer zoo. The lower panels of Fig. 3.2 suggest that a wide variety of mixed spot and stripe patterns can

be created through breakup instabilities. In order to explore these new types of solution further, we shall perform full
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numerical continuation of 2D solutions. To do this, we begin with a solution on the stable steady-state branch of Fig. 2.3.

We then continue this solution by varying the main bifurcation parameter k2, both backwards and forwards, to finally

obtain the bifurcation diagram depicted in Fig. 3.3. There, all unstable branches are plotted as light-grey dashed lines,

whereas stable branches are represented as solid lines labelled accordingly as: (b) stable stripes, (c) an interior spot and

two spots vertically aligned at the boundary, (d) similar configuration but with an additional stripe, and (e) an interior

spot and five spots at the boundary. See Figures 3.3(b)–3.3(e) for examples of each stable steady-state. In Fig. 3.3(a),

as seen before, the bifurcation diagram replicates features studied in the 1D case in [4], such as the overlapping of stable

branches of single and multiple localised patches. Stable branches typically become unstable through fold bifurcations.

All branches seem to lie on a single connected curve, and no other bifurcations were found except for the pitchfork

bifurcations in branch (b). However, branches (c) up to (e) are extremely close to each other and apparently inherit

properties from each other. That is, they seem to undergo a creation-annihilation cascade effect similar to that observed

in [4]. In other words, take a steady-state which lies on the left-hand end of branch (c) and slide down this branch as

k2 is increased. It then loses stability at the fold point, and at the other extreme to then fall off in branch (d). Thus a

stripe emerges, which pushes the interior spot further in. The same transition follows up to branch (e), more spots arise

though as the stripe is destroyed. No further stable branches with steady-states resembling either spots or stripes were

found.

4. Breakup instabilities of localised stripes. In [7] and [14] a theoretical framework for the stability analysis

of a localised stripe for the Gierer–Meinhardt reaction-diffusion system was given. This previous analysis is not directly

applicable to the ROP problem (1.1) owing to the presence of the spatially dependent coefficient α(x) that modulates

the nonlinear term. In the limit ε→ 0, in this section we extend the analysis of [14] to theoretically explain the breakup

instability of stripe solutions numerically observed in Fig. 2.4 and Fig. 2.5.

We first re-scale variables in (1.1) by U = ε−1u and V = εv and we assume D = O(ε−1) so that D = ε−1D0 with

D0 = O(1) (see [4]). Then, (1.1) becomes

ut = ε2 (uxx + suyy) + α(x)u2v − u+
ε2

τγ
v , (4.1a)

ετvt = D0 (vxx + svyy) + 1− εv − ε−1
[
τγ
(
α(x)u2v − u

)
+ βγu

]
, (4.1b)

with homogeneous Neumann boundary conditions at x = 0, 1 and y = 0, 1. The relation between the dimensionless

parameters τ , γ, β, and D0 and the original parameters is given above in (1.2).

4.1. An Interior Stripe. We first consider the stability of an isolated, interior localised stripe. To do so, we first

need to construct for ε→ 0 a 1D quasi steady-state spike solution centred at some x0 in 0 < x0 < 1. From Proposition 4.1

of [4], this spike solution for (4.1) has the leading-order asymptotics

us ∼
1

α(x0)v0
w
[
ε−1(x− x0)

]
, w(ξ) ≡ 3

2
sech2 (ξ/2) , (4.2a)

vs ∼ v0 − (x− x0)
2

2D0
+

1

D0

 −x0 (x− x0) , 0 ≤ x ≤ x0 ,

(1− x0) (x− x0) , x0 < x ≤ 1 ,
, v0 ≡ 6βγ

α (x0)
. (4.2b)

Here w(ξ) is the unique homoclinic orbit of w′′ − w + w2 = 0 with w(0) > 0, w′(0) = 0, and w → 0 as |ξ| → ∞.

We extend this solution trivially in the y-direction to form a stripe. To determine the stability of this stripe solution

we introduce the transverse perturbation of (4.2) in the same form as in (2.3). Upon substituting this perturbation
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into (4.1), we get the following singularly perturbed eigenvalue problem with ϕx = ψx = 0 at x = 0, 1:

ε2ϕxx − ϕ+ 2α(x)usvsϕ+ α(x)u2
sψ +

ε2

τγ
ψ =

(
λ+ sε2m2

)
ϕ , (4.3a)

D0

(
ψxx − sm2ψ

)
− ε−1τγα(x)u2

sψ − εψ = ε−1 [τγ (2α(x)usvsϕ− ϕ) + βγϕ] + ετλψ . (4.3b)

There are two distinct classes of eigenvalues for (4.3), each giving rise to a different type of instability (see [14]).

The small eigenvalues, with λ = O(ε2), govern zigzag instabilities, whereas the large eigenvalues with λ = O(1) as ε→ 0

govern the linear stability of the amplitude of the stripe. For the Gierer–Meinhardt model, this latter instability was

found in [14] to be the mechanism through which a nonlinear event is triggered leading to the break up of the stripe into

localised spots. The simulations and numerical analysis in §2 suggest that breakup instabilities dominate on an O(1)

time-scale, and hence we shall only focus on analysing the large eigenvalues with λ = O(1) as ε→ 0.

To analyse such breakup instabilities, we must derive an NLEP from (4.3). Since the time-evolution of a 1D quasi

steady-state spike centred at x0 moves at an O(ε2)� 1 speed (see [4]), in our stability analysis of the O(1) eigenvalues

we will consider x0 to be frozen. The steady-state solution for x0 is characterized by Proposition 4.3 of [4].

We begin by looking for a localised eigenfunction for ϕ(x) in the form

Φ(ξ) = ϕ(x0 + εξ) , ξ ≡ ε−1(x− x0) , Φ→ 0 as |ξ| → ∞ . (4.4)

We then use (4.2) to calculate 2usvsα ∼ 2w and αu2
s ∼ α(x0)w2/

[
α(x0)v0

]2
for x near x0. In this way, we obtain

from (4.3a) that Φ(ξ) ∼ Φ0(ξ) + o(1), where Φ0 satisfies

L0Φ0 +
w2

α(x0) [v0]
2ψ(x0) =

(
λ+ sε2m2

)
Φ0 , −∞ < ξ <∞ ; Φ0 → 0 as |ξ| → ∞ . (4.5)

Here L0Φ0 ≡ Φ0ξξ − Φ0 + 2wΦ0 is referred to as the local operator.

Next, we must calculate ψ(x0) in (4.5) from (4.3b). Since us and ϕ are localised, we use (4.2) to calculate as ε→ 0

the coefficients in (4.3b) in the sense of distributions as

ε−1τγα(x)u2
sψ −→

τγ

α(x0) [v0]
2

[∫ ∞
−∞

w2 dξ

]
ψ(x) δ(x− x0) ,

ε−1 [τγ (2α(x)usvsϕ− ϕ) + βγϕ] −→ 2τγ

[∫ ∞
−∞

(wΦ0 − κΦ0) dξ

]
δ(x− x0) , κ ≡ 1

2

(
1− β

τ

)
,

where
∫∞
−∞ w2 dξ = 6. Similar calculations for the 1D spike were given in (5.4) of [4]. In this way, we obtain from (4.3b)

that, in the outer region, ψ ∼ ψ0 where ψ0 satisfies

D0

(
ψ0xx − sm2ψ0

)
− 6τγ

α(x0) [v0]
2ψ0(x)δ(x− x0) = 2τγ

[∫ ∞
−∞

(wΦ0 − κΦ0) dξ

]
δ (x− x0) , (4.6)

with ψ0x = 0 at x = 0, 1. This problem for ψ0 is equivalent to the following problem with jump conditions across x = x0:{
ψ0xx − sm2ψ0 = 0, 0 < x < x0 , x0 < x < 1 ; ψ0x (0) = ψ0x (1) = 0 ,

[ψ0]x0
= 0 , D0 [ψ0x]x0

= a0
γ ψ0(x0) + γb0 ,

(4.7)

where we define the bracket notation as [z]x0
≡ z(x+

0 )− z(x−0 ). In (4.7), we have defined a0 and b0 by

a0 ≡
6τγ2

α (x0) [v0]
2 , b0 ≡ 2τ

∞∫
−∞

(wΦ0 − κΦ0) dξ , κ ≡ 1

2

(
1− β

τ

)
. (4.8)
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To represent the solution to (4.7) we introduce the Green’s function G (x;x0) satisfying

Gxx − sm2G = −δ (x− x0) , 0 < x < 1 ; Gx(0;x0) = Gx(1;x0) = 0 ; [Gx]x0
= −1 . (4.9)

For existence of this G we require that m > 0. The case m = 0, studied in [4], corresponds to the stability problem of a

1D spike and requires the introduction of the modified or Neumann Green’s function. Here we consider the case m > 0.

For m > 0, the solution to (4.7) is ψ(x) = AG (x;x0), where A is determined from the jump condition in (4.7). In this

way, we calculate ψ(x0) as

ψ0(x0) = − γ2b0
a0G0 + γD0

G0 , G0 ≡ G(x0;x0) . (4.10)

Upon substituting (4.10) into (4.5), and from the definitions of a0 and b0 in (4.8), we obtain that

L0Φ0 − 2χw2

(
G0

D0 + 6χG0

)∫ ∞
−∞

(wΦ0 − κΦ0) dξ =
(
λ+ sε2m2

)
Φ0 , (4.11)

where we have defined χ by

χ ≡ τγ

α (x0) [v0]
2 , v0 =

6βγ

α(x0)
.

Next, we introduce a parameter µ defined by

µ ≡ 12χG0

D0 + 6χG0
= 2

(
1 +

D0

6χG0

)−1

. (4.12)

In terms of this parameter, (4.11) becomes

L0Φ0 −
µ

6
w2 (I1 − κI2) =

(
λ+ sε2m2

)
Φ0 , (4.13)

where I1, and I2, are defined by I1 ≡
∫∞
−∞ wΦ0 dξ and I2 ≡

∫∞
−∞ Φ0 dξ.

The NLEP (4.13) involves two non-local terms. To derive an NLEP in a more standard form with only one nonlocal

term, we integrate (4.13) from −∞ < ξ <∞ to relate I1 and I2 as

I2 =
2− µ

λ+ 1 + sε2m2 − µκ
I1 , (4.14)

where we have used
∫∞
−∞ w2 dξ = 6. Then, upon using this relation to eliminate I2 in (4.13) we obtain an NLEP

characterizing breakup instabilities for an interior localised stripe. We summarize our result in the following formal

proposition:

Proposition 4.1. The stability on an O(1) time-scale of a quasi steady-state interior stripe solution of (4.1) is deter-

mined by the spectrum of the NLEP

L0Φ0 − θh(λ;m)w2

∫∞
−∞ wΦ0 dξ∫∞
−∞ w2 dξ

=
(
λ+ sε2m2

)
Φ0 , −∞ < ξ <∞ ; Φ0 → 0 , as |ξ| → ∞ , (4.15a)

where L0Φ0 ≡ Φ0ξξ − Φ0 + 2wΦ0, and θh(λ;m) is given by

θh(λ;m) ≡ µ
(
λ+ 1 + sε2m2 − 2κ

λ+ 1 + sε2m2 − µκ

)
, (4.15b)

µ ≡ 2

(
1 +

D0

6χG0

)−1

, χ ≡ τα (x0)

36β2γ
, G0 ≡ G (x0;x0) .

Here G (x;x0) is defined by (4.9), and the wavenumber m in the y-direction is m = kπ with k ∈ Z+.
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Fig. 4.1: Sketch of a dispersion relation <(λ) versus m, showing the unstable band of wavenumbers lying between the vertical
dashed lines. The expected number of spots is closely determined by the most unstable mode m∗.

The NLEP (4.15a) is not self-adjoint, it has a nonlocal term and the multiplier θh depends on λ. However, our goal

is to prove the following proposition:

Proposition 4.2. The NLEP in (4.15) has a unique unstable eigenvalue when m lies within an instability band 0 <

mlow < m < mup, with mlow = O(1) and mup = O
(
ε−1
)
.

The spectrum of the NLEP is shown to be similar to that sketched in Fig. 4.1 (see also Fig. 3.1). The upper edge

of the band mup will depend on the aspect ratio s. The expected number of spots that are predicted to form from the

break up of the stripe can be estimated from the maximum growth rate m∗ in Fig. 4.1.

To prove Proposition 4.2, we first need to determine the edges of the band of instability. To do so, we derive a few

detailed properties of the Green’s function satisfying (4.9), as provided in the following lemma.

Lemma 4.1. Define G0 ≡ G(x0;x0) where G(x;x0) satisfies (4.9). Then,

G0 ∼ 1

sm2
as m→ 0+ ; G0 ∼ 1

2
√
s m

as m→∞ , (4.16a)

dG0

dm
< 0 , for m > 0 ;

dG0

dx0
> 0 , for 0 < x0 < 1/2 , m > 0 . (4.16b)

Proof. From (4.9), we readily calculate that

G (x;x0) =
1√

s m sinh (
√
s m)

{
cosh (

√
s mx) cosh (

√
s m (1− x0)) , 0 ≤ x < x0

cosh (
√
s mx0) cosh (

√
s m (1− x)) , x0 < x ≤ 1

,

which determines G0 as

G0 =
cosh (

√
s mx0) cosh (

√
s m (1− x0))√

s m sinh (
√
s m)

. (4.17)

Upon expanding the hyperbolic functions for small and large argument we readily obtain the asymptotics in (4.16a) for

m→ 0 and m→∞. To determine dG0/dx0, we differentiate (4.17) to get

dG0

dx0
=

sinh [
√
s m(2x0 − 1)]

sinh(
√
s m)

> 0 , for 0 < x0 < 1/2 .
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To prove the final statement in (4.16) we proceed indirectly. We define the self-adjoint operator L by Lu ≡ uxx− sm2u,

and differentiate (4.9) with respect to m to get L (dG/dm) = 2smG. Then, from Lagrange’s identify, we derive

0 =

∫ 1

0

[
GL

(
dG

dm

)
− dG

dm
LG

]
dx = 2sm

∫ 1

0

G2 dx+

∫ 1

0

dG

dm
δ(x− x0) dx = 2sm

∫ 1

0

G2 dx+
dG0

dm
.

Therefore, dG0/dm = −2sm
∫ 1

0
G2 dx < 0 for m > 0, which completes the proof of (4.16). �

To determine the upper edge of the instability band we use G0 = O(1/m) as m→∞, to conclude that θh = O(1/m)

in (4.15b). Therefore, for m� 1, the effect of the nonlocal term in the NLEP is asymptotically insignificant. With this

observation, we let m = m0/ε, with m0 = O(1) in (4.15a) to obtain, in terms of L0Φ0 ≡ Φ0ξξ − Φ0 + 2wΦ0, that

L0Φ0 −O(ε) =
(
λ+ sm2

0

)
Φ0 . (4.18)

It is well-known (see [19]), that the local eigenvalue problem L0Ψ = νΨ with Ψ → 0 as |ξ| → ∞ has a unique

positive eigenvalue ν0 = 5/4 with positive eigenfunction Ψ0 = sech3 (ξ/2). With this identification, (4.18) shows that

λ = ν0−sm2
0 +O(ε), so that λ < 0 if m0 >

√
ν0/s and λ > 0 if m0 <

√
ν0/s . Upon setting λ = 0, we obtain the upper

edge of the instability band of the interior stripe in terms of both the dimensional variables and the original variables

of (1.2) as

mup ∼
1

ε

√
ν0

s
, ν0 = 5/4 ; mup ∼

√
ν0(c+ r)

D1
Ly . (4.19)

Next, to estimate the lower threshold mlow, we suppose that m � O(ε−1), so that we neglect the sε2m2 terms in

(4.15b) to leading order. Then, we obtain that θh(λ;m) = θh0(λ;m) +O(ε2m2), where

θh0(λ;m) ≡ µ
(
λ+ 1− 2κ

λ+ 1− µκ

)
, (4.20)

and µ is defined in (4.15b). Now as m→ 0, we have G0 →∞ from (4.16a), so that µ→ 2. Therefore, θh0(λ;m)→ 2 > 1

as m→ 0 for all λ. We conclude from Lemma A and Theorem 1.3 of [30] that a 1D spike is stable on an O(1) time-scale

for any choice of the parameters β, τ , and γ. From the analysis in §3 of [29] based on the rigorous study of the NLEP

in [30], we obtain that an instability occurs at mode number m whenever

θh0 (0;m) = µ

(
1− 2κ

1− µκ

)
< 1 . (4.21)

This sufficient condition for instability is examined further in Proposition 4.3 below. To prove that (4.21) has a unique

root, we differentiate (4.21) with respect to m to obtain

dθh0 (0;m)

dm
=

[
(1− 2κ)

(1− µκ)
+
µκ(1− 2κ)

(1− µκ)2

]
dµ

dm
. (4.22)

From the definition of µ in (4.15b), and from the properties of G0 in Lemma 4.1, we have that µ → 2 as m → 0, with

µ < 2 and dµ/dm < 0 for m > 0. Moreover, since κ = (1− β/τ) /2 < 1/2, we obtain that (1 − µκ) > 0 in (4.22).

Therefore, we conclude from (4.22) that dθh0 (0;m) /dm < 0 with θh0 (0;m)→ 2 as m→ 0 and θh0 (0;m) = O(1/m) for

m � 1. This proves that there is a unique value m0low of m for which θh0 (0;m) = 1. By using (4.21) and (4.15b) for

θh0 and µ, respectively, we get that θh0 (0;m) = 1 when m = m0low, where m0low is the unique positive root of

G0 =
6βD0γ

α(x0)
. (4.23)
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With the edges of the instability band now determined, we prove that the NLEP (4.15a) with multiplier θb0(λ;m),

and where εm is neglected on the right-hand side of (4.15a), has a unique eigenvalue λ0 in <(λ0) > 0 located on the

positive real axis when m satisfies mlow ≤ m� O(ε−1), and that <(λ) < 0 when 0 < m < mlow. To analyze the NLEP

(4.15a) when εm � 1 for eigenfunctions for which
∫∞
−∞ wΦ0 dξ 6= 0, we recast it into a more convenient form. Upon

neglecting the εm terms in (4.15a), we write

Φ0 = θh0

(∫∞
−∞ wΦ0 dξ∫∞
−∞ w2 dξ

)
(L0 − λ)

−1
w2 .

We then multiply both sides of this equation by w and integrate over the real line. In this way, we obtain that the

eigenvalues of (4.15a) when εm� 1 are the roots of the transcendental equation g(λ) = 0, where

g(λ) ≡ C(λ)−F(λ) , C(λ) ≡ 1

θh0(λ;m)
, F(λ) ≡

∫∞
−∞ w (L0 − λ)

−1
w2 dξ∫∞

−∞ w2 dξ
, (4.24a)

C(λ) =
a1 + b1λ

a2 + b2λ
, a1 ≡ 1− µκ , b1 = 1 , a2 = µ(1− 2κ) , b2 = µ . (4.24b)

Our analysis of the roots of (4.24) leads to the following main result:

Proposition 4.3. Let εm� 1, and let N denote the number of eigenvalues of the NLEP of (4.15a) in <(λ) > 0. Then,

for m on the range m� O(ε−1) as ε→ 0+, we have

• (I): N = 1 if m > m0low. The unique real unstable eigenvalue λ0 satisfies 0 < λ0 < ν0. Here m0low is the

unique root of (4.23).

• (II): N = 0 if 0 < m < m0low.

Proof. To determine the roots of (4.24) we use a winding number approach. To calculate the number N of zeros of g(λ)

in the right-half plane, we compute the winding of g(λ) over the contour Γ traversed in the counterclockwise direction

composed of the following segments in the complex λ-plane: Γ+
I (0 ≤ =(λ) ≤ iR, <(λ) = 0), Γ−I (−iR ≤ =(λ) ≤ 0,

<(λ) = 0), and ΓR defined by |λ| = R > 0, −π/2 ≤ arg(λ) ≤ π/2.

The pole of C(λ) is at λ = −a2/b2 = −(1− 2κ). Since κ < 1/2, then C(λ) is analytic in <(λ) ≥ 0. In contrast, the

function F(λ) has a simple pole at the unique positive eigenvalue ν0 = 5/4 of L0. Thus, g(λ) in (4.24) is analytic in <(λ) ≥
0 except at the simple pole λ = 5/4. Therefore, by the argument principle we obtain that N−1 = (2π)−1 limR→∞ [arg g]Γ,

where [arg g]Γ denotes the change in the argument of g over Γ. Furthermore, since F(λ) = O(1/λ) and C(λ)→ b1/b2 on

ΓR as R→∞, it follows that limR→∞ [arg g]ΓR
= 0. For the contour Γ−I , we use g(λ) = g(λ) so that [arg g]Γ−

I
= [arg g]Γ+

I
.

In this way, we obtain that the number N of unstable eigenvalues of the NLEP (4.24) is

N = 1 +
1

π
[arg g]Γ+

I
. (4.25)

Here [arg g]Γ+
I

denotes the change in the argument of g as the imaginary axis λ = iλI is traversed from λI = +∞ to

λI = 0.

To calculate [arg g]Γ+
I

, we decompose g(iλI) in (4.24) into real and imaginary parts as

g(iλI) = gR(λI) + igI(λI) = CR(λI)−FR(λI) + i [CI(λI)−FI(λI)] , (4.26)

where CR = < [C], CI = = [C], FR = < [F ], and FI = = [F ]. From (4.24), we obtain that

CR(λI) ≡
a1a2 + b1b2λ

2
I

a2
2 + b22λ

2
I

, CI(λI) ≡
(b1a2 − b2a1)λI

a2
2 + b22λ

2
I

, (4.27a)

FR(λI) =

∫∞
−∞ wL0

[
L2

0 + λ2
I

]−1
w2 dξ∫∞

−∞ w2 dξ
, FI(λI) = λI

∫∞
−∞ w

[
L2

0 + λ2
I

]−1
w2 dξ∫∞

−∞ w2 dξ
. (4.27b)
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Several key properties of CR and CI are needed below. We first observe that CI < 0 for any λI > 0. To see this,

we use (4.24b) to calculate b1a2 − b2a1 = µk [−2 + µ] < 0 since µ < 2. Secondly, we observe that CR → b1/b2 > 0 as

λI →∞. Finally, we note that CR(0) > 1 (i.e. θh0(0;m) < 1) when m > m0low, and CR(0) < 1 (i.e. θh0(0;m) > 1) when

0 < m < m0low.

Next, we require the following properties of FR(λI) and FI(λI), as established rigorously in Propositions 3.1 and 3.2

of [29]:

FR(0) = 1 ; F ′R(λI) < 0 , λI > 0 ; FR(λI) = O
(
λ−2
I

)
, λI → +∞ , (4.28a)

FI(0) = 0 ; FI(λI) > 0 , λI > 0 ; FI(λI) = O
(
λ−1
I

)
, λI → +∞ . (4.28b)

Since FI > 0 and CI < 0, it follows that gI(λI) < 0 for all λI > 0. Moreover, gI(0) = 0, gI(λI) → 0 and gR(λI) →
b1/b2 > 0 as λI →∞. This proves that [arg g]Γ+

I
= 0 or [arg g]Γ+

I
= −π, depending on the sign of gR(0). For the range

0 < m < m0low, then gR(0) = CR(0) − FR(0) < 0, so that [arg g]Γ+
I

= −π and N = 0 from (4.25). Alternatively, if

m > m0low, then gR(0) = CR(0)−FR(0) > 0, so that [arg g]Γ+
I

= 0 and N = 1 from (4.25).

The final step in the proof of Proposition 4.3 is to locate the unique positive real eigenvalue when m > m0low. On

the positive λ = λR > 0, some global properties of F(λR), which were rigorously established in Proposition 3.5 of [29],

are as follows:

F(λR) > 0 , F ′(λR) > 0 , for 0 < λR < ν0 = 5/4 ; F(λR) < 0 , for λR > ν0 , (4.29)

with F(0) = 1 and F(λR) → +∞ as λR → ν+
0 . Since C(0) > 1 when m > m0low, it follows that the unique unstable

eigenvalue for this range of m satisfies 0 < λ < ν0. This completes the proof of Proposition 4.3. �

With the uniqueness of the unstable eigenvalue established in Proposition 4.3, the proof of Proposition 4.2 is complete.

We now illustrate our stability results for a steady-state stripe where γ (and hence k2 from (1.2b)) and s are the

primary bifurcation parameters. From Proposition 4.3 of [4] the steady-state stripe location x0 for a given γ > 0 is given

by the unique root of

1

6βγD0

(
1

2
− x0

)
+

α′(x0)

[α(x0)]
2 = 0 . (4.30)

Since α′(x0) < 0, it follows that x0 satisfies 0 < x0 < 1/2. Moreover, upon setting α(x0) = e−νx0 in (4.30), we obtain

that x0 is a root of

6βD0νγ = H(x0) , H(x0) ≡
(

1

2
− x0

)
e−νx0 . (4.31)

Since H′(x0) < 0 on 0 < x0 < 1/2, and γ is inversely proportional to the auxin level k2 at x = 0, from (1.2b), it

follows that the distance x0 of the steady-state stripe from the left boundary increases as k2 increases. This was shown

numerically in Fig. 4.3 of [4].

Then, upon combining (4.31) with (4.23), we obtain that the lower edge m0low of the instability band for a steady-

state stripe satisfies

G0 =
1

ν

(
1

2
− x0

)
. (4.32)

Since dG0/dx0 > 0 on 0 < x0 < 1/2 from Lemma 4.1, while the right-hand side of (4.32) is decreasing on 0 < x0 < 1/2.

it follows from the fact that dG0/dm < 0 (see Lemma 4.1), that m0low increases as x0 increases. This leads to our key
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Fig. 4.2: Lower threshold mlow versus x0 and γ for a steady-state stripe, as obtained by setting θh(0;m) = 1 in (4.15b). Plots are
shown for several values of the aspect ratio parameter s. Under steady-state conditions, for a given γ, x0 is determined
from (4.30). In (a) the re-scaled parameter set one is given in Table 1.1, while in (b) the re-scaled parameter set two
is given in Table 1.1. In the bottom row we plot θh(0;m) (solid curves), from (4.15b), and θh0(0;m) (dotted curves),
from (4.20), when s = 5.5 and for several pairs (γ, x0) as obtained from the steady-state condition (4.30). All curves do
eventually cross below the threshold θh(0;m) = 1, although for some curves this occurs outside the range of m shown in
the figure. In (c) the data set is from the re-scaled parameter set one in Table 1.1, while for (d) the data set is from the
re-scaled parameter set two in Table 1.1.

qualitative result that m0low increases as γ decreases, or equivalently as k2 increases. Thus, since the upper threshold

m0up is independent of k2, it follows that the width of the instability band in m decreases when k2 increases.

A second qualitative feature associated with (4.23) is with regards to the dependence of m0low on the aspect ratio

parameter s. Since G0 in (4.17) depends on
√
s m, it follows from (4.23) that the lower threshold m0low is proportional

to 1/
√
s , where

√
s = Lx/Ly. Therefore, m0low is smaller for rectangular domains that are thinner in the transverse

direction. In view of (4.19), m0up is also smaller for thin rectangular domains.

In Fig. 4.2(a)–4.2(b) we plot mlow versus x0 and γ for a steady-state stripe, as obtained by numerically determining

the root of θh(0;m) = 1 from (4.15b). These plots are shown for several values of the aspect ratio parameter s. We remark

that as γ is varied, x0 is calculated from the steady-state condition (4.30). The results are shown for the parameter set

one (left figure) and two (right figure) in Table 1.1. In Fig. 4.2(c) and Fig. 4.2(d) we plot θh(0;m) from (4.15b) (solid

curves) and θh0(0;m) from (4.20) (dotted curves) for the parameters set one and two given in Table 1.1, respectively.

The results are shown for a fixed aspect ratio parameter s = 5.5 for various pairs of (x0, γ), related by the steady-state
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Fig. 4.3: Dispersion relation <(λ) versus k for a steady-state interior localised stripe. In (a) we fix x0 = 0.4 (and hence γ by (4.30))
and plot the dispersion relation for several aspect ratio parameters s. In (b) we fix s = 5.5 and plot the dispersion relation
for several steady-state pairs of (x0, γ). The re-scaled parameter set three, given in Table 1.1, was used. The nearest
integer value of k to the location of the maximum of these curves is the theoretically predicted number of spots to form
from the break up of the stripe.

condition (4.30). We observe that there is better agreement for small modes in Fig. 4.2(d) rather than in Fig. 4.2(c).

This results from the fact that parameter set two in Table 1.1 has a smaller value of ε, and is therefore closer to the

asymptotic limit ε� 1 required by our stability analysis.

Finally, since the wavenumber k of the unstable mode m is given by k = m/π, the expected number of spots is given

by the number of maxima of cos (kmaxy) when

mlow

π
< kmax <

√
ν0(c+ r)

π2D1
Ly ,

where kmax corresponds to the integer nearest the location of the maximum of the dispersion relation.

To determine the dispersion relation and the maximum growth rate, we must numerically compute the spectrum of

the NLEP (4.15) within the instability band. Our computations are done for the parameter set three given in Table 1.1,

which is a further modification of the set one. To do so, we use a standard three point uniform finite differences method

to discretize (4.15a) to obtain a nonlinear eigenvalue problem, and then apply a backwards iterative process on m. In

order to perform this computation, m is treated as a continuous variable. The results are shown in Fig. 4.3 in the plot

of <(λ) versus k = m/π. In Fig. 4.3(a) we plot the dispersion relation for a fixed x0 but for several different aspect ratio

parameters. From this figure we observe that the most unstable mode increases as s decreases, or equivalently as the

transverse width Ly of the domain increases. As a consequence, we predict that as the domain width in the transverse

direction increases, a larger number of spots can emerge after a breakup instability.

On the other hand, in Fig. 4.3(b), by fixing the aspect ratio s, we show that as x0 decreases, or equivalently as γ

increases (or k2 decreases), the growth rate for an instability increases rather substantially, with only a slight shift in

the location of the most unstable mode. Therefore, even though the steady-state stripe location only slightly influences

the number of spots that are predicted from the break up of the stripe, larger values of γ, or equivalently smaller values

of k2, will promote a wider band of unstable modes and a rather large increase in the growth rate of the most unstable

mode. Therefore, this suggests that an interior stripe is more sensitive to a transverse instability if it is located closer to

the left-hand boundary, where the influence of the auxin gradient is the strongest.

The dispersion relation for an interior stripe with s = 5.5 and x0 = 0.35 is the top curve in Fig. 4.3(b). It predicts
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Fig. 4.4: Breakup instability and secondary O(1) time-scale instabilities of an interior localised stripe for U . (a) The localised
stripe initially breaks into two spots; (b) once formed, the spots migrate from the boundary towards each other along
the x-location line, and (c) rotate until they get aligned with the longitudinal direction. (d) Finally, they get pinned far
from each other. Original parameter set three as given in Table 1.1 with k2 = 0.5, which corresponds to a stripe location
at x0 = 24.5.

that the stripe will break up into either two or three spots. To confirm this theoretical prediction, we take the stripe

as the initial condition and perform a direct numerical simulation of the full PDE system (4.1) for the parameter set

three in Table 1.1. The results are shown in Fig. 4.4, where we observe from Fig. 4.4(a) and Fig. 4.4(b) that the stripe

initially breaks into two distinct localised spots. The spatial dynamics of these two newly-created spots is controlled

by the auxin gradient. They initially move closer to each other along a vertical line, and then rotate slowly in a

clockwise direction to eventually become aligned with the horizontal direction associated with the auxin gradient α(x)

(see Fig. 4.4(c)). Finally, in Fig. 4.4(d) we show a stable equilibrium configuration of two spots lying along the centre

line of the transverse direction. An open problem, beyond the scope of this paper, is to characterise the dynamics and

instabilities of spot patterns in the presence of the auxin gradient.

4.2. A Boundary Stripe. The bifurcation diagram depicted in Fig. 2.3 shows all branches to be linearly unstable

under transverse perturbations, except for a narrow window on the boundary stripe branch. In this section we will derive

and analyse the NLEP associated with a boundary stripe centred at x = 0. We remark that the stability of a boundary

stripe was not investigated in the prior studies of [7] and [14]. Although we give only a formal derivation of the NLEP,

we will obtain rigorous results for the spectrum of the NLEP.
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A steady-state boundary spike (us, vs) centred at x = 0 was constructed asymptotically in the limit ε → 0 in

Proposition 4.4 of [4], with the result

vs ∼ v0
b +

(
− x2

2D0
+

x

D0

)
, us ∼

1

α(0)v0
b

w (x/ε) , v0
b =

3βγ

α(0)
, (4.33)

where w(ξ) = (3/2) sech2(ξ/2) is the even homoclinic solution of w′′ − w + w2 = 0. Upon substituting (4.33) into (4.1),

we obtain the eigenvalue problem (4.3) characterizing transverse instabilities on an O(1) time-scale.

We then look for a localised eigenfunction for ϕ(x) in the form

Φb(ξ) = ϕ(εξ) , ξ ≡ ε−1x . (4.34)

From (4.33) we calculate 2usvsα ∼ 2w and αu2
s ∼ α(0)w2/

[
α(0)v0

]2
for x near 0. In this way, we obtain from (4.3a)

that Φb(ξ) ∼ Φb0(ξ) + o(1), where Φb0 satisfies

L0Φb0 +
w2

α(0) [v0
b ]

2ψ(0) =
(
λ+ sε2m2

)
Φb0 , ξ ≥ 0 ; Φb0ξ(0) = 0 , Φb0 → 0 as ξ →∞ . (4.35)

Here L0Φb0 ≡ Φb0ξξ − Φb0 + 2wΦb0.

Next, we must calculate ψ(0) in (4.35) from (4.3b). To do so, we use (4.33) and (4.34) for us, vs, and ϕ, and

we integrate (4.3b) over 0 < x < δ, where δ is an intermediate scale between the inner and outer regions satisfying

O(ε)� δ � O(1). In this way, we obtain

D0ψx|δ0 +O(δ)− τγψ(0)

α(0) [v0
b ]

2

∫ δ/ε

0

w2 dξ +O(εδ) = 2τγ

∫ δ/ε

0

(wΦb0 − κΦb0) dξ +O(εδτλ) ,

where κ ≡ (1− β/τ) /2. Since δ � O(ε) and
∫∞

0
w2 dξ = 3, we obtain in the limit δ → 0 with δ/ε� 1 that

D0ψx(0+) ≡ 3τγψ(0)

α(0) [v0
b ]

2 + 2τγ

∫ ∞
0

(wΦb0 − κΦb0) dξ . (4.36)

In this way, we obtain from (4.3b) and (4.36) that the leading-order outer solution ψ0 for ψ satisfies

ψ0xx − sm2ψ0 = 0 , 0 < x ≤ 1 ; ψ0x(1) = 0 ; D0ψ0x(0+) =
ab
γ
ψ0(0) + γbb , (4.37)

where, upon using (4.33) for v0
b , we have defined ab and bb by

ab ≡
τα(0)

3β2
, bb ≡ 2τ

∫ ∞
0

(wΦb0 − κΦb0) dξ , κ ≡ 1

2

(
1− β

τ

)
. (4.38)

The solution to the ODE in (4.37) with ψ0x(1) = 0 is ψ0(x) = A cosh [
√
s m(x− 1)]. The constant A is found by

satisfying the condition in (4.37) at x = 0, which then determines ψ0(0) as

ψ0(0) = − γ2bb
ab +D0γ

√
s m tanh (

√
s m)

.

Upon substituting ψ0(0) into (4.35), and by using (4.38) for ab and bb, we obtain after some re-arrangement that

L0Φb0 −
µb
3
w2 (I1 − κI2) =

(
λ+ ε2sm2

)
Φb0 , ξ ≥ 0 ; Φb0ξ(0) = 0 , Φb0 → 0 as ξ →∞ . (4.39)

In (4.39), we have defined µb, I1, and I2, by

µb ≡
2

1 + χb
√
s m tanh (

√
s m)

, χb ≡
3D0β

2γ

τα(0)
, I1 ≡

∫ ∞
0

wΦb0 dξ , I2 ≡
∫ ∞

0

Φb0 dξ . (4.40)

Next, we integrate (4.39) over ξ ≥ 0 and use
∫∞

0
w2 dξ = 3 to obtain the relation (4.14) between I1 and I2. Finally, the

NLEP for the boundary stripe is obtained by eliminating I2 in (4.39). We summarise our result for the NLEP as follows:

22



Proposition 4.4. The stability on an O(1) time-scale of a steady-state boundary stripe solution of (4.1) is determined

by the spectrum of the NLEP

L0Φb0 − θb(λ;m)w2

∫∞
0
wΦb0 dξ∫∞

0
w2 dξ

=
(
λ+ sε2m2

)
Φ0 , 0 ≤ ξ <∞ ; Φb0 → 0 as |ξ| → ∞ , (4.41a)

with Φb0ξ(0) = 0 and L0Φb0 ≡ Φb0ξξ − Φb0 + 2wΦb0. Here θb(λ;m) is given by

θb(λ;m) ≡ µb
(
λ+ 1 + sε2m2 − 2κ

λ+ 1 + sε2m2 − µbκ

)
, κ ≡ 1

2

(
1− β

τ

)
, (4.41b)

µb ≡
2

1 + χb
√
s m tanh (

√
s m)

, χb ≡
3D0β

2γ

τα(0)
. (4.41c)

We remark that to incorporate the homogeneous Neumann boundary condition at ξ = 0, we can simply extend

Φb0 to be an even function of ξ and replace the range 0 < ξ < ∞ of integration in the two integrals in (4.41a) to be

−∞ < ξ <∞. In this way, we can use the NLEP stability theory of §4.1 for an interior stripe.

We first observe that µb = µb(m) satisfies µb(0) = 2, µb = O(1/m) for m � 1, and dµb/dm < 0 for m > 0. As a

consequence of this behavior for µb, we obtain, as for the case of the interior stripe, the following proposition:

Proposition 4.5. The NLEP in (4.41) has a unique unstable eigenvalue when m lies within an instability band 0 <

mlow < m < mup, with mlow = O(1) and mup = O
(
ε−1
)
.

Since the proof of Proposition 4.5 parallels that in §4.1, we only outline the derivation. However, we remark that

since µb(0) = 2, we have θb(λ; 0) = 2 for all λ. Since θb(λ; 0) = 2 > 1, we conclude from Lemma A and Theorem 1.3

of [30] that <(λ) < 0, and so a 1D boundary spike is stable on an O(1) time-scale for any choice of the parameters β, τ ,

and γ.

Next, since µb = O(1/m) for m � 1, we conclude from (4.41b) that θb = O(ε) when m = O(ε−1). As such, we

conclude as in §4.1 (see (4.18)–(4.19)) that, on the regime m = O(ε−1), the boundary stripe is stable when m > mup

and is unstable when m < mup, where mup is defined in (4.19). To determine the lower edge of the instability band,

which occurs on the regime εm � 1, we set θb(0;m) = 1. Upon using (4.41b) where εm � 1, we readily obtain that

mlow ∼ zlow/
√
s , where z = zlow is the unique root of

z tanh(z) =
1− 2κ

χb
=

β

τχb
, χb ≡

3D0β
2γ

τα(0)
, (4.42)

where α(0) = 1. The unstable discrete eigenvalues of the NLEP (4.41) are characterized as follows:

Proposition 4.6. Let εm� 1, and let N denote the number of eigenvalues of the NLEP of (4.41) in <(λ) > 0. Then,

for m on the range m� O(ε−1) as ε→ 0+, we have

• (I): N = 1 if m > m0low. The unique real unstable eigenvalue λ0 satisfies 0 < λ0 < ν0. Here, for ε → 0,

m0low = zlow/
√
s and zlow is the unique root of (4.42).

• (II): N = 0 if 0 < m < m0low.

The proof of this result is exactly the same as for the interior stripe case, as given in Proposition 4.3, and is omitted.

In Fig. 4.5(a) we plot θb(0;m) versus m for several values of the aspect ratio parameter s. The other data values

are set as in Table 1.1 for the parameter set three. As shown in the proof of Proposition 4.3, the NLEP (4.41) has an

unstable eigenvalue when θb(0;m) < 1. In Fig. 4.5(b) we plot the lower edge mlow of the instability band versus γ for

several values of s, as obtained from numerically determining the root of θb(0;m) = 1 from (4.41b). For ε � 1, we

have that mlow ∼ m0low ≡ zlow/
√
s , where zlow is the unique root of (4.42). From (4.42), we conclude that m0low is
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Fig. 4.5: (a) Plot of θb(0;m) versus m as obtained from (4.41b). (b) The lower edge mlow of the instability band versus γ for several
values of the aspect ratio parameter s. From (4.42), mlow is proportional to 1/

√
s and mlow decreases as γ increases.

Recall from (1.2b) that γ is inversely proportional to k2, representing the non-dimensional auxin concentration at x = 0.
Re-scaled parameter set three as given in Table 1.1.
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Fig. 4.6: Breakup instability for U of a boundary stripe for two different values of k2. Initial snapping as (a) k2 = 0.0013 and (c)
k2 = 0.4; from there (b) one and (d) four spots are formed at the boundary. The original parameter set three, given in
Table 1.1, is used. The parameter values k2 = 0.0013 and k2 = 0.4 correspond to γ = 115 and γ = 0.375 respectively in
terms of the re-scaled variables.
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proportional to 1/
√
s and that m0low decreases as γ increases. Since γ is inversely proportional to the non-dimensional

auxin concentration k2 at x = 0 (see (1.2b)), it follows that mlow is larger for larger values of k2 when ε� 1. Recall that

the upper edge mup of the instability band is independent of k2 and only depends on s and ε. As such, we expect that

the location mmax of the maximum growth rate is larger for larger k2, suggesting that as k2 is increased the boundary

stripe will break up into an increasing number of spots.

To test this prediction, we solve the full RD system (1.1) numerically with a boundary stripe as the initial condition.

Two simulations are performed; one for a small value of k2 = 0.0013, corresponding to γ = 115, and one with the larger

value k2 = 0.4, for which γ = 0.375. The other parameter values are fixed as in Table 1.1 for the parameter set three.

For k2 = 0.0013, in Fig. 4.6(a) we show that the boundary stripe breaks up into one spot, which is eventually formed

at the midpoint of the transversal length (see Fig. 4.6(b)). In contrast, for the larger value k2 = 0.4, in Fig. 4.6(c) we

show that the boundary stripe initially begins to break in two, ultimately leading to four spots along the boundary, as

shown in Fig. 4.6(d). These results confirm the theoretical prediction that a boundary stripe will break up into a larger

number of spots as k2 is increased.

5. Conclusions. This paper has sought to make more realistic the analysis began in [4] of a generalised Schnaken-

berg system with a spatial gradient of the active nonlinear term. The model seeks to explain the auxin-mediated action

of ROPs in an Arabidopsis root hair cell leading to the creation of a unique isolated patch of active ROP from which hair

formation is initiated. The choice of a rectangular 2D domain and homogeneous auxin concentration in the y-direction in

this work was motivated by a compromise between more biological realism and mathematical tractability. Realistically,

the reactions we model are thought to take place in the cytosol of the plant cell, which in a thin domain occupying the

space between the cell wall and the cell vacuole, the high-pressure void within plant cells that maintains turgor pressure.

Modelling the portion of this space that abuts the root epidermis, we have in reality a thin slice formed out of a fixed

circumferential arc of the space between two concentric cylinders. We have simplified this domain in two ways. First, we

have ignored diffusion in the radial direction, although in effect this is captured by the much larger diffusion constant

of the inactive ROPs that are free to move in all radial position compared with the active from, that is bound to the

outer wall. Second, we have ignored curvature, as we do not believe this is likely to affect diffusion significantly and can

be approximated by small adjustments to diffusion constants.

The other simplification we have chosen is to assume no y-dependence on the auxin gradient. In a sense this is

the simplest possible assumption given that evidence currently in the literature so-far only supports a gradient in the

x-direction [11], with no information on y-dependence. A key test then is whether in the absence of any y-gradient, a

spot-like rather than a stripe-like patch will occur.

Broadly speaking, our analysis and computations support the conclusions reached in 1D. For low k2-values (low

overall auxin concentration or short cells) there is a patch of active ROP that is confined to the basal end of the cell.

As k2 is increased there is a bifurcation into states which have increasing numbers of spots, which correspond to either

wild type (where there would be a unique interior spot) and various multiple hair mutant types in which auxin is

increased to much higher levels. Owing to the presence of fold bifurcations, there is an overlap between the parameter

intervals in which the different states exist, which suggests hysteretic transitions upon increase and decrease of the

bifurcation parameter. In [4] this property was argued to be crucial and to imply biological robustness; a cell that is in

the process of forming a single hair would not reverse this process or start growing an extra one if the auxin concentration

were to suddenly change. Moreover, owing to the auxin gradient k2α(x), spot-like patches first form where the auxin

concentration is highest, that is towards the basal end of the cell, as observed in wild type.

Another encouraging finding has been that we have found the instability of stripes into spot-like states occurs on an
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O(1) time-scale. This means that once the boundary patch of active ROP switches into the cell interior, it quickly, on

an O(1) time-scale, breaks up into spots. Note that there can therefore be no multi-stripe interior states either. This is

an important implication as the transition into a spot-like state can be interpreted as a minimising energy (maximising

entropy) thermodynamical process. That is, in order to maintain a sufficient supply of active ROP to induce localised

cell wall softening, the aggregation process follows the least energy cost.

One weakness of our results though is that the analysis of the O(1) times-cale instability is only really tractable due

to the Neumann boundary conditions in y and homogeneity of the auxin in the y-direction. One biologically unrealistic

consequence of this simplification is that there is no preference for spot-like patches to form on the lateral mid-line; there

is an equal chance that half-spots can form at the transverse edge of the domain. In reality, softening cell wall patches

always occur along the mid-line of the cell. It seems then that a more complete mathematical model of the root hair

patterning process would require some non-trivial y-dependence in order to pin spots transversly. This could easily be

accounted for by the nature of the transport of auxin into neighbouring non-root-hair cells as suggested by [11] (see also

[10] for a modelling approach). The analytic approach developed here would no longer be applicable in this case. An

investigation of these effects is left to future work. This could be modelled by either allowing an auxin gradient in both

directions or by having traverse boundary conditions of Robin type. Such an analysis is beyond the scope of this paper,

and is left to future work.

Another connection that is left for future work is the understanding of the multi-spot solutions in terms of the theory

of so-called homoclinic snaking [5, 32] in which multiple localised patterns coexist with stable periodic and homogeneous

background states. Recently [3] we showed that the spatially homogeneous version of the system investigated here in 1D

satisfies all the ingredients of that theory, which explains the presence of localised patterns of arbitrary wide spatial extent

(provided the domain is long enough). The inclusion of a gradient α(x) multiplying the main bifurcation parameter k2,

ensures that all these localised branches do not coexist for asymptotically the same parameter intervals, but at parameter

intervals that drift as the parameter value is changed, so called “slanted snaking” [6]. This slant occurs, in effect, because

the local value of the parameter k2α(x) decreases as the centre of the localised pattern shifts to the right. An analysis of

the bifurcation diagram of localised 2D patterns in this system using such methods is left for future work, but we note

the subtleties that can occur in rectangular domains [2].
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