2,076 research outputs found

    Applying black hole perturbation theory to numerically generated spacetimes

    Get PDF
    Nonspherical perturbation theory has been necessary to understand the meaning of radiation in spacetimes generated through fully nonlinear numerical relativity. Recently, perturbation techniques have been found to be successful for the time evolution of initial data found by nonlinear methods. Anticipating that such an approach will prove useful in a variety of problems, we give here both the practical steps, and a discussion of the underlying theory, for taking numerically generated data on an initial hypersurface as initial value data and extracting data that can be considered to be nonspherical perturbations.Comment: 14 pages, revtex3.0, 5 figure

    Black hole collisions from Brill-Lindquist initial data: predictions of perturbation theory

    Get PDF
    The Misner initial value solution for two momentarily stationary black holes has been the focus of much numerical study. We report here analytic results for an astrophysically similar initial solution, that of Brill and Lindquist (BL). Results are given from perturbation theory for initially close holes and are compared with available numerical results. A comparison is made of the radiation generated from the BL and the Misner initial values, and the physical meaning is discussed.Comment: 11 pages, revtex3.0, 5 figure

    Non-exponential relaxation and hierarchically constrained dynamics in a protein

    Full text link
    A scaling analysis within a model of hierarchically constrained dynamics is shown to reproduce the main features of non-exponential relaxation observed in kinetic studies of carbonmonoxymyoglobin.Comment: 4 pages, 3 figures in text. Reference errors have been correcte

    Cauchy-perturbative matching and outer boundary conditions I: Methods and tests

    Get PDF
    We present a new method of extracting gravitational radiation from three-dimensional numerical relativity codes and providing outer boundary conditions. Our approach matches the solution of a Cauchy evolution of Einstein's equations to a set of one-dimensional linear wave equations on a curved background. We illustrate the mathematical properties of our approach and discuss a numerical module we have constructed for this purpose. This module implements the perturbative matching approach in connection with a generic three-dimensional numerical relativity simulation. Tests of its accuracy and second-order convergence are presented with analytic linear wave data.Comment: 13 pages, 6 figures, RevTe

    Cauchy-perturbative matching and outer boundary conditions: computational studies

    Get PDF
    We present results from a new technique which allows extraction of gravitational radiation information from a generic three-dimensional numerical relativity code and provides stable outer boundary conditions. In our approach we match the solution of a Cauchy evolution of the nonlinear Einstein field equations to a set of one-dimensional linear equations obtained through perturbation techniques over a curved background. We discuss the validity of this approach in the case of linear and mildly nonlinear gravitational waves and show how a numerical module developed for this purpose is able to provide an accurate and numerically convergent description of the gravitational wave propagation and a stable numerical evolution.Comment: 20 pages, RevTe

    Waveform propagation in black hole spacetimes: evaluating the quality of numerical solutions

    Get PDF
    We compute the propagation and scattering of linear gravitational waves off a Schwarzschild black hole using a numerical code which solves a generalization of the Zerilli equation to a three dimensional cartesian coordinate system. Since the solution to this problem is well understood it represents a very good testbed for evaluating our ability to perform three dimensional computations of gravitational waves in spacetimes in which a black hole event horizon is present.Comment: 13 pages, RevTeX, to appear in Phys. Rev.

    Critical behavior at Mott-Anderson transition: a TMT-DMFT perspective

    Full text link
    We present a detailed analysis of the critical behavior close to the Mott-Anderson transition. Our findings are based on a combination of numerical and analytical results obtained within the framework of Typical-Medium Theory (TMT-DMFT) - the simplest extension of dynamical mean field theory (DMFT) capable of incorporating Anderson localization effects. By making use of previous scaling studies of Anderson impurity models close to the metal-insulator transition, we solve this problem analytically and reveal the dependence of the critical behavior on the particle-hole symmetry. Our main result is that, for sufficiently strong disorder, the Mott-Anderson transition is characterized by a precisely defined two-fluid behavior, in which only a fraction of the electrons undergo a "site selective" Mott localization; the rest become Anderson-localized quasiparticles.Comment: 4+ pages, 4 figures, v2: minor changes, accepted for publication in Phys. Rev. Let

    Interactions and Scaling in a Disordered Two-Dimensional Metal

    Full text link
    We show that a non-Fermi liquid state of interacting electrons in two dimensions is stable in the presence of disorder and is a perfect conductor, provided the interactions are sufficiently strong. Otherwise, the disorder leads to localization as in the case of non-interacting electrons. This conclusion is established by examining the replica field theory in the weak disorder limit, but in the presence of arbitrary electron-electron interaction. Thus, a disordered two-dimensional metal is a perfect metal, but not a Fermi liquid.Comment: 4 pages, RevTe

    Superconducting RF Metamaterials Made with Magnetically Active Planar Spirals

    Full text link
    Superconducting metamaterials combine the advantages of low-loss, large inductance (with the addition of kinetic inductance), and extreme tunability compared to their normal metal counterparts. Therefore, they allow realization of compact designs operating at low frequencies. We have recently developed radio frequency (RF) metamaterials with a high loaded quality factor and an electrical size as small as ∌\simλ\lambda658, (λ\lambda is the free space wavelength) by using Nb thin films. The RF metamaterial is composed of truly planar spirals patterned with lithographic techniques. Linear transmission characteristics of these metamaterials show robust Lorentzian resonant peaks in the sub- 100 MHz frequency range below the TcT_c of Nb. Though Nb is a non-magnetic material, the circulating currents in the spirals generated by RF signals produce a strong magnetic response, which can be tuned sensitively either by temperature or magnetic field thanks to the superconducting nature of the design. We have also observed strong nonlinearity and meta-stable jumps in the transmission data with increasing RF input power until the Nb is driven into the normal state. We discuss the factors modifying the induced magnetic response from single and 1-D arrays of spirals in the light of numerical simulations.Comment: 4 pages, 7 figure

    Gapless superconductivity and the Fermi arc in the cuprates

    Full text link
    We argue that the Fermi arc observed in angle resolved photoemission measurements in underdoped cuprates can be understood as a consequence of inelastic scattering in a d-wave superconductor. We analyze this phenomenon in the context of strong coupling Eliashberg theory, deriving a `single lifetime' model for describing the temperature evolution of the spectral gap as measured by single particle probes such as photoemission and tunneling.Comment: 4 pages, 2 figures. Submitted to PR
    • 

    corecore