2 research outputs found

    C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking

    No full text
    Intronic expansion of a hexanucleotideGGGGCCrepeat in the chromosome9 open reading frame72 (C9ORF72) geneisthemajorcauseoffamilialamyotrophic lateral sclerosis(ALS)andfrontotemporaldementia.However,the cellular function of theC9ORF72 protein remains unknown. Here,wedemonstrate thatC9ORF72 regulates endosomal trafficking. C9ORF72 colocalized with Rab proteins implicated in autophagy and endocytic transport: Rab1, Rab5, Rab7 and Rab11 in neuronal cell lines, primary cortical neurons and human spinal cord motor neurons, consistent with previous predictionsthatC9ORF72 bearsRabguanine exchange factor activity.Consistent with this notion, C9ORF72 was present in the extracellular space and as cytoplasmic vesicles. Depletion of C9ORF72 using siRNA inhibited transport of Shiga toxin fromthe plasmamembrane to Golgi apparatus, internalizationofTrkBreceptorandalteredthe ratio ofautophagosomemarker lightchain3(LC3) II:LC3I, indicatingthat C9ORF72 regulates endocytosis and autophagy. C9ORF72 also colocalized with ubiquilin-2 and LC3-positive vesicles, and co-migrated with lysosome-stained vesicles in neuronal cell lines, providing further evidence thatC9ORF72regulates autophagy. Investigationof proteinsinteractingwithC9ORF72usingmassspectrometry identified other proteins implicated in ALS; ubiquilin-2 and heterogeneous nuclear ribonucleoproteins, hnRNPA2/B1 and hnRNPA1, and actin. Treatment of cells overexpressing C9ORF72 with proteasome inhibitors induced the formation of stress granules positive for hnRNPA1 and hnRNPA2/B1. Immunohistochemistry of C9ORF72 ALS patient motor neurons revealed increased colocalization between C9ORF72 and Rab7 and Rab11 compared with controls, suggesting possible dysregulation of trafficking in patients bearing the C9ORF72 repeat expansion. Hence, this study identifies a role for C9ORF72 in Rab-mediated cellular trafficking. © The Author 2014. Published by Oxford University Press

    Virulence-associated subtilisin-like proteases that use a novel disulphide-tethered exosite to mediate substrate specificity (3LPA, 3LPC, 3LPD)

    No full text
    <div>Many bacterial pathogens produce extracellular proteases that are involved in the degradation of the host extracellular matrix. Dichelobacter nodosus, which causes ovine footrot, is one such pathogen, Mutagenesis and virulence studies revealed that AprV2, one of three secreted subtilisin-like D. nodosus proteases, is required for virulence. Our work challenges the previous hypothesis that the elastase activity of AprV2 is important for disease progression, since aprV2 mutants were virulent when complemented with a variant with impaired elastase activity. These data reveal that an unusual extended disulphide-tethered loop functions as an exosite that governs the ability of AprV2 to degrade insoluble extracellular matrix components. The disulphide bond and Tyr92, located at the exposed end of the loop, were functionally important. Bioinformatics suggests that other pathogens utilize a similar mechanism, providing a new paradigm for understanding the role of proteases in disease.</div><div><br></div><p></p
    corecore