1,183 research outputs found

    Is transport in time-dependent random potentials universal ?

    Full text link
    The growth of the average kinetic energy of classical particles is studied for potentials that are random both in space and time. Such potentials are relevant for recent experiments in optics and in atom optics. It is found that for small velocities uniform acceleration takes place, and at a later stage fluctuations of the potential are encountered, resulting in a regime of anomalous diffusion. This regime was studied in the framework of the Fokker-Planck approximation. The diffusion coefficient in velocity was expressed in terms of the average power spectral density, which is the Fourier transform of the potential correlation function. This enabled to establish a scaling form for the Fokker-Planck equation and to compute the large and small velocity limits of the diffusion coefficient. A classification of the random potentials into universality classes, characterized by the form of the diffusion coefficient in the limit of large and small velocity, was performed. It was shown that one dimensional systems exhibit a large variety of novel universality classes, contrary to systems in higher dimensions, where only one universality class is possible. The relation to Chirikov resonances, that are central in the theory of Chaos, was demonstrated. The general theory was applied and numerically tested for specific physically relevant examples.Comment: 5 pages, 3 figure

    On the attractors of two-dimensional Rayleigh oscillators including noise

    Full text link
    We study sustained oscillations in two-dimensional oscillator systems driven by Rayleigh-type negative friction. In particular we investigate the influence of mismatch of the two frequencies. Further we study the influence of external noise and nonlinearity of the conservative forces. Our consideration is restricted to the case that the driving is rather weak and that the forces show only weak deviations from radial symmetry. For this case we provide results for the attractors and the bifurcations of the system. We show that for rational relations of the frequencies the system develops several rotational excitations with right/left symmetry, corresponding to limit cycles in the four-dimensional phase space. The corresponding noisy distributions have the form of hoops or tires in the four-dimensional space. For irrational frequency relations, as well as for increasing strength of driving or noise the periodic excitations are replaced by chaotic oscillations.Comment: 9 pages, 5 figure

    Polaron Recombination in Pristine and Annealed Bulk Heterojunction Solar Cells

    Full text link
    The major loss mechanism of photogenerated polarons was investigated in P3HT:PCBM solar cells by the photo-CELIV technique. For pristine and annealed devices, we find that the experimental data can be explained by a bimolecular recombination rate reduced by a factor of about ten (pristine) and 25 (annealed) as compared to Langevin theory. Aided by a macroscopic device model, we discuss the implications of the lowered loss rate on the characteristics of polymer:fullerene solar cells.Comment: 3 pages, 4 figure

    Direct optical observations of surface thermal motions at sub-shot noise levels

    Full text link
    We measure spectral properties of surface thermal fluctuations of liquids, solids, complex fluids and biological matter using light scattering methods. The random thermal fluctuations are delineated from random noise at sub-shot noise levels. The principle behind this extraction, which is quite general and is not limited to surface measurements, is explained. An optical lever is used to measure the spectrum of fluctuations in the inclinations of surfaces down to ∼10−17rad2/Hz\sim 10^{-17}\rm rad^2/Hz at 1∼10μ1\sim10 \muW optical intensity, corresponding to ∼10−29m2/Hz\sim 10^{-29} \rm m^2/\rm Hz in the vertical displacement, in the frequency range 1kHz∼10MHz1{\rm}\rm kHz\sim10 MHz. The dynamical evolution of the surface properties is also investigated. The measurement requires only a short amount of time and is essentially passive, so that it can be applied to a wide variety of surfaces.Comment: 5pp, 5 figure

    Anomalous temperature dependence of surface tension and capillary waves at liquid gallium

    Full text link
    The temperature dependence of surface tension \gamma(T) at liquid gallium is studied theoretically and experimentally using light scattering from capillary waves. The theoretical model based on the Gibbs thermodynamics relates the temperature derivative of \gamma to the surface excess entropy -\Delta S. Although capillary waves contribute to the surface entropy with a positive sign the effect of dipole layer on \Delta S is negative. Experimental data collected at a free Ga surface in the temperature range from 30 to 160 C show that the temperature derivative of the tension changes sign near 100 C.Comment: 11 pages, 1 Postscript figure, submitted to J. Phys.

    Spectral properties of thermal fluctuations on simple liquid surfaces below shot noise levels

    Full text link
    We study the spectral properties of thermal fluctuations on simple liquid surfaces, sometimes called ripplons. Analytical properties of the spectral function are investigated and are shown to be composed of regions with simple analytic behavior with respect to the frequency or the wave number. The derived expressions are compared to spectral measurements performed orders of magnitude below shot noise levels, which is achieved using a novel noise reduction method. The agreement between the theory of thermal surface fluctuations and the experiment is found to be excellent.Comment: 9 pages, 5 figure

    Fluctuating and dissipative dynamics of dark solitons in quasi-condensates

    Full text link
    The fluctuating and dissipative dynamics of matter-wave dark solitons within harmonically trapped, partially condensed Bose gases is studied both numerically and analytically. A study of the stochastic Gross-Pitaevskii equation, which correctly accounts for density and phase fluctuations at finite temperatures, reveals dark soliton decay times to be lognormally distributed at each temperature, thereby characterizing the previously predicted long lived soliton trajectories within each ensemble of numerical realizations (S.P. Cockburn {\it et al.}, Phys. Rev. Lett. 104, 174101 (2010)). Expectation values for the average soliton lifetimes extracted from these distributions are found to agree well with both numerical and analytic predictions based upon the dissipative Gross-Pitaevskii model (with the same {\it ab initio} damping). Probing the regime for which 0.8kBT<μ<1.6kBT0.8 k_{B}T < \mu < 1.6 k_{B}T, we find average soliton lifetimes to scale with temperature as τ∼T−4\tau\sim T^{-4}, in agreement with predictions previously made for the low-temperature regime kBT≪μk_{B}T\ll\mu. The model is also shown to capture the experimentally-relevant decrease in the visibility of an oscillating soliton due to the presence of background fluctuations.Comment: 17 pages, 14 figure

    A simple measure of memory for dynamical processes described by the generalized Langevin equation

    Full text link
    Memory effects are a key feature in the description of the dynamical systems governed by the generalized Langevin equation, which presents an exact reformulation of the equation of motion. A simple measure for the estimation of memory effects is introduced within the framework of this description. Numerical calculations of the suggested measure and the analysis of memory effects are also applied for various model physical systems as well as for the phenomena of ``long time tails'' and anomalous diffusion

    Observation of enhanced rate coefficients in the H2+_2^+ + H2_2 →\rightarrow H3+_3^+ + H reaction at low collision energies

    Full text link
    The energy dependence of the rate coefficient of the H2+ +H2→H3++H_2^+\ + {\rm H}_2 \rightarrow {\rm H}_3^+ + {\rm H} reaction has been measured in the range of collision energies between kB⋅10k_\mathrm{B}\cdot 10 K and kB⋅300k_\mathrm{B}\cdot 300 mK. A clear deviation of the rate coefficient from the value expected on the basis of the classical Langevin-capture behavior has been observed at collision energies below kB⋅1k_\mathrm{B}\cdot 1 K, which is attributed to the joint effects of the ion-quadrupole and Coriolis interactions in collisions involving ortho-H2_2 molecules in the j=1j = 1 rotational level, which make up 75% of the population of the neutral H2_2 molecules in the experiments. The experimental results are compared to very recent predictions by Dashevskaya, Litvin, Nikitin and Troe (J. Chem. Phys., in press), with which they are in agreement.Comment: 14 pages, 3 figure
    • …
    corecore