16,371 research outputs found
Turbulent flow in graphene
We demonstrate the possibility of a turbulent flow of electrons in graphene
in the hydrodynamic region, by calculating the corresponding turbulent
probability density function. This is used to calculate the contribution of the
turbulent flow to the conductivity within a quantum Boltzmann approach. The
dependence of the conductivity on the system parameters arising from the
turbulent flow is very different from that due to scattering.Comment: 4 pages, Latex file, Journal versio
RTL2RTL Formal Equivalence: Boosting the Design Confidence
Increasing design complexity driven by feature and performance requirements
and the Time to Market (TTM) constraints force a faster design and validation
closure. This in turn enforces novel ways of identifying and debugging
behavioral inconsistencies early in the design cycle. Addition of incremental
features and timing fixes may alter the legacy design behavior and would
inadvertently result in undesirable bugs. The most common method of verifying
the correctness of the changed design is to run a dynamic regression test suite
before and after the intended changes and compare the results, a method which
is not exhaustive. Modern Formal Verification (FV) techniques involving new
methods of proving Sequential Hardware Equivalence enabled a new set of
solutions for the given problem, with complete coverage guarantee. Formal
Equivalence can be applied for proving functional integrity after design
changes resulting from a wide variety of reasons, ranging from simple pipeline
optimizations to complex logic redistributions. We present here our experience
of successfully applying the RTL to RTL (RTL2RTL) Formal Verification across a
wide spectrum of problems on a Graphics design. The RTL2RTL FV enabled checking
the design sanity in a very short time, thus enabling faster and safer design
churn. The techniques presented in this paper are applicable to any complex
hardware design.Comment: In Proceedings FSFMA 2014, arXiv:1407.195
Shell closure effects studied via cluster decay in heavy nuclei
The effects of shell closure in nuclei via the cluster decay is studied. In
this context, we have made use of the Preformed Cluster Model () of Gupta
and collaborators based on the Quantum Mechanical Fragmentation Theory. The key
point in the cluster radioactivity is that it involves the interplay of close
shell effects of parent and daughter. Small half life for a parent indicates
shell stabilized daughter and long half life indicates the stability of the
parent against the decay. In the cluster decay of trans lead nuclei observed so
far, the end product is doubly magic lead or its neighbors. With this in our
mind we have extended the idea of cluster radioactivity. We investigated decay
of different nuclei where Zirconium is always taken as a daughter nucleus,
which is very well known deformed nucleus. The branching ratio of cluster decay
and -decay is also studied for various nuclei, leading to magic or
almost doubly magic daughter nuclei. The calculated cluster decay half-life are
in well agreement with the observed data. First time a possibility of cluster
decay in nucleus is predicted
Quantum Inverse Square Interaction
Hamiltonians with inverse square interaction potential occur in the study of
a variety of physical systems and exhibit a rich mathematical structure. In
this talk we briefly mention some of the applications of such Hamiltonians and
then analyze the case of the N-body rational Calogero model as an example. This
model has recently been shown to admit novel solutions, whose properties are
discussed.Comment: Talk presented at the conference "Space-time and Fundamental
Interactions: Quantum Aspects" in honour of Prof. A.P.Balachandran's 65th
birthday, Vietri sul Mare, Italy, 26 - 31 May, 2003, Latex file, 9 pages.
Some references added in the replaced versio
Application of High Conductive Nanoparticles to Enhance Thermal and Mechanical Properties of Wood Composite
In the present work three different types of nanofillers such as multiwalled carbon nanotubes (MWCNTs), aluminum oxide nanoparticles and nanosize activated charcoal were mixed with UF resin and used in the preparation of medium density fiberboard(MDF). The process has improved heat transfer during hot pressing and achieved proper curing due to enhanced thermo physical properties of wood fibers. To improve the dispersion of nanofillers into UF matrix, high speed mechanical stirring and ultrasonic treatments were used. The MWCNTs were oxidized with nitric acid and the functional groups formed on its surface improved the dispersion and interaction with UF matrix. The dispersion of nanofillers in UF resin matrix was confirmed with XRD, FESEM, and DMA tests undertaken. The mixing of MWCNTs and Aluminum oxide with UF resin have reduced the curing time due to enhanced thermal conductivity of MDF matrix. The heat transfer during hot pressing of MDF improved significantly with the addition of MWCNTs and Al2O3 nanoparticle and activated charcoal did not have much effect on heat transfer. The curing rate of UF resin improved with all the three nanofillers, as the activation energy of UF curing decrease as shown by the DSC results. The physical and mechanical properties of MDF have improved significantly with MWCNTs and Al2O3 nanoparticle. The activated charcoal has significantly decreased the formaldehyde emission of MDF
Impact of Merger of Housing Development Finance Corporation Bank and Centurion Bank of Punjab on Shareholder Value Management
This study analyzes the impact of merger on the shareholder’s wealth through Economic Value Added (EVA) and Market Value Added (MVA) in Indian Banking Industry. The paper explains the major strategic reasons and various challenges of the high profile mergers of Indian Banking Industry. The paper has attempted to find out the impact of the merger on the acquirer bank’s profitability ratio, on its different variables like EVA, MVA, etc. This study also explores the fact that there is very little impact of the sub- prime crisis on the merger outcomes. Key Words: EVA (Economic Value Added), MVA (Market Value Added), Profitability Ratios, Sub Prime Crisi
Measuring Technical Efficiency of Indian Banking Sector in Post Subprime Crises Scenario: A Non Parametric Frontier Based Approach
This study gives a comparative analysis of the technical efficiency of top Indian banks during 2007-2011. This period is characterized by far reaching experience of sub-prime crisis (2008-2009) and its impact on Indian banking sector. Efficiency assessment of Indian banking sector has become highly imperative now a days because of intense competition, changing reforms, and instability in banking environment. This study uses Data Envelopment Analysis (DEA), a non parametric linear programming based technique, for evaluating the relative efficiency of top public, private and foreign banks in India. The present paper, based on empirical analysis, shows that the levels of input and output variables in efficiency measurement have changed significantly during this period and banks have improved their relative efficiency score over the period of time. Results support the fact that after sub-prime crisis, Advances (A) and Investments (I) are getting importance as output variables, while Operating Costs (OC), Fixed Assets (FA) and Capital (C) are considered as important input variables. This study also recommends that Data Envelopment Analysis (DEA) could be a suitable tool for measuring relative efficiency score of Indian banking sector. Key words: Technical Efficiency, Sub Prime Crisis Period, Non Parametric Approach, Data Envelopment Analysis
Birefringence analysis of multilayer leaky cladding optical fibre
We analyse a multilayer leaky cladding (MLC) fibre using the finite element
method and study the effect of the MLC on the bending loss and birefringence of
two types of structures: (i) a circular core large-mode-area structure and (ii)
an elliptical-small-core structure. In a large-mode-area structure, we verify
that the multilayer leaky cladding strongly discriminates against higher order
modes to achieve single-mode operation, the fibre shows negligible
birefringence, and the bending loss of the fibre is low for bending radii
larger than 10 cm. In the elliptical-small-core structure we show that the MLC
reduces the birefringence of the fibre. This prevents the structure from
becoming birefringent in case of any departures from circular geometry. The
study should be useful in the designs of MLC fibres for various applications
including high power amplifiers, gain flattening of fibre amplifiers and
dispersion compensation.Comment: 18 page
- …