3 research outputs found

    Особенности выбора траектории и этапов полета беспилотного летательного аппарата на солнечной энергии в условиях неспокойной атмосферы

    Get PDF
    When forming the design parameters of an unmanned aerial vehicle (UAV) on solar energy, it is important to consider the peculiarities of energy supply not only when performing horizontal flight, but also at other stages (take-off, landing, maneuver, etc.), which ultimately form a common flight trajectory the implementation of which ensures the implementation of the specific task assigned to the UAV. However, the flight should be considered taking into account the actual operating conditions, including atmospheric factors. Determining the features of planning the trajectories and stages of flight of a UAV on solar energy during the implementation of a long flight, considering energy, design constraints and actual operating conditions, is the goal of this work. The possible trajectories of flight of UAVs on solar cells are determined in accordance with the typical tasks of its practical application. A discrete model is proposed for planning a trajectory of a route for a UAV on solar cells. The principles of the implementation of the stages of takeoff and landing of UAVs on solar energy are described, the dependencies between the energy consumption and the main parameters of each stage are determined. The dependences are obtained for determining the main components of the energy balance of UAVs on solar energy on the parameters of curvilinear flight. Verification of the obtained dependences was carried out by comparing the calculated and experimental (flight) data for a particular UAV on solar energy, which is of the mini class by mass. The convergence of the results of calculation and experiment is in the range of 15–20 %. The factors acting on an aircraft in a restless atmosphere, their effect on operational and design constraints are established. A generalized analytical model was obtained to determine the conditions for the implementation of a long flight (4–6 hours) of a solar-powered UAV, considering: mass, aerodynamic, energy characteristics; trajectory, atmospheric and operational conditions. The results of the study can be used at forming the shape of a UAV on solar energy at the stage of its preliminary design. При формировании проектных параметров беспилотного летательного аппарата (БпЛА) на солнечной энергии важно учитывать особенности энергообеспечения не только при выполнении горизонтального полета, но и на остальных этапах (взлет, посадка, маневр и т. д.), которые в итоге формируют общую траекторию полета, реализация которой обеспечивает выполнение поставленной перед БпЛА конкретной задачи. Вместе с тем следует рассматривать полет с учетом реальных условий эксплуатации, включающих атмосферные факторы. Определение особенностей планирования траекторий и этапов полета БпЛА на солнечной энергии при реализации продолжительного полета с учетом энергетики, конструктивных ограничений и реальных условий эксплуатации является целью данной работы. Определены возможные траектории полета БпЛА на солнечных элементах в соответствии с типовыми задачами его практического применения. Предложена дискретная модель планирования траектории маршрута для БпЛА на солнечных элементах. Описаны принципы реализации этапов взлета и посадки БпЛА на солнечной энергии, определены зависимости между энергозатратами и основными параметрами каждого из этапов. Получены зависимости для определения основных составляющих энергетического баланса БпЛА на солнечной энергии от параметров криволинейного полета. Проведена верификация полученных зависимостей путем сравнения расчетных и экспериментальных (летных) данных для конкретного БпЛА на солнечной энергии, по массе относящемуся к классу мини. Сходимость результатов расчета и эксперимента находится в пределах 15–20 %. Установлены факторы, действующие на летательный аппарат в неспокойной атмосфере, их влияние на эксплуатационные и конструктивные ограничения. Получена обобщенная аналитическая модель для определения условий реализации продолжительного полета (4–6 ч) БпЛА на солнечной энергии, учитывающие: массовые, аэродинамические, энергетические характеристики; траекторные, атмосферные и эксплуатационные условия. Результаты исследования могут быть использованы при формировании облика БпЛА на солнечной энергии на этапе его эскизного проектирования.

    Analysis of Mass-energy Balance of Unmanned Aircraft Fueled by Solar Energy

    Full text link
    To understand the characteristics and principles of creation of an aircraft, fueled by solar energy, the fundamentals of providing mass-energy balance and its specificity were considered.To create a mathematical model that describes interrelations between the basic parameters of an aircraft, fueled by solar energy, it was proposed to describe the main components in stages, namely:– power, required for the implementation of a horizontal flight;– total power consumption for performing of a flight, including take-off andmaneuvers;– magnitude of energy, generated during a flight;– total take-off mass of an aircraft.The principles of power supply of the aircraft systems under all flight modes were defined. Under the mode of a horizontal flight, there should be enough power, generated by solar panels, to fuel all systems. The power surplus is accumulated in the battery. Under the takeoff and landing modes, as well as during a maneuver, the current deficit of the generated power may be compensated for by power of the battery.We described the factors that affect performance of solar panels of an aircraft, in particular shading, V-shape of a wing, geometry of aerodynamic profile, cloudiness, and orientation relative to the Sun. The model is proposed for determining the mass of an aircraft in general, which takes into account weight characteristics of the industrial components of an aircraft.Results of the study might be used in the process of creation of aircraft, fueled by solar energy, at the stage of outline design.We obtained a generalized analytical model of mass-energy balance of an aircraft, taking into account common operation modes and the laws of solar energy generation, which allows us to conduct analytical prediction of characteristics of prototypes. The model combines technological, operational, and design parameters, and is the basis for the formation of algorithm for choosing the parameters of an aircraft fueled by solar energy
    corecore