24 research outputs found
Recommended from our members
The superfluid Stirling refrigerator, a new method for cooling below 0.5 K
A new subkelvin refrigerator, the superfluid Stirling cycle refrigerator, uses a working fluid of {sup 3}He-{sup 4}He mixture in a Stirling cycle. The thermodynamically active components of the mixture are the {sup 3}He, which behaves like a Boltzman gas, and the phonon-roton gas in the {sup 4}He. The superfluid component of the liquid is inert. Two refrigerators have been built and temperatures of 340 mK have been achieved
Phase diagram of superfluid 3He in "nematically ordered" aerogel
Results of experiments with liquid 3He immersed in a new type of aerogel are
described. This aerogel consists of Al2O3 strands which are nearly parallel to
each other, so we call it as a "nematically ordered" aerogel. At all used
pressures a superfluid transition was observed and a superfluid phase diagram
was measured. Possible structures of the observed superfluid phases are
discussed.Comment: 6 pages, 8 figures. Submitted to Pis'ma v ZhETF (JETP Letters
Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates
We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor,
using high precision torsional oscillator and DC calorimetry techniques. Our
investigation focused on the onset of superfluidity at low temperatures as the
4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel
system were used to determine the superfluid density of films with transition
temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor
system probed the excitation spectrum of both non-superfluid and superfluid
films for temperatures down to 10 mK. Both sets of measurements suggest that
the critical coverage for the onset of superfluidity corresponds to a mobility
edge in the chemical potential, so that the onset transition is the bosonic
analog of a superconductor-insulator transition. The superfluid density
measurements, however, are not in agreement with the scaling theory of an onset
transition from a gapless, Bose glass phase to a superfluid. The heat capacity
measurements show that the non-superfluid phase is better characterized as an
insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
Renormalization Group Study of the Intrinsic Finite Size Effect in 2D Superconductors
Vortices in a thin-film superconductor interact logarithmically out to a
distance on the order of the two-dimensional (2D) magnetic penetration depth
, at which point the interaction approaches a constant. Thus,
because of the finite , the system exhibits what amounts to an
{\it intrinsic} finite size effect. It is not described by the 2D Coulomb gas
but rather by the 2D Yukawa gas (2DYG). To study the critical behavior of the
2DYG, we map the 2DYG to the massive sine-Gordon model and then perform a
renormalization group study to derive the recursion relations and to verify
that is a relevant parameter. We solve the recursion relations
to study important physical quantities for this system including the
renormalized stiffness constant and the correlation length. We also address the
effect of current on this system to explain why finite size effects are not
more prevalent in experiments given that the 2D magnetic penetration depth is a
relevant parameter.Comment: 8 pages inRevTex, 5 embedded EPS figure
Study of Kosterlitz-Thouless transition of Bose systems governed by a random potential using quantum Monte Carlo simulations
We perform quantum Monte Carlo simulations to study the 2D hard-core
Bose-Hubbard model in a random potential. Our motivation is to investigate the
effects of randomness on the Kosterlitz--Thouless (KT) transition. The chemical
potential is assumed to be random, by site, with a Gaussian distribution. The
KT transition is confirmed by a finite-size analysis of the superfluid density
and the power-law decay of the correlation function. By varying the variance of
the Gaussian distribution, we find that the transition temperature decreases as
the variance increases. We obtain the phase diagram showing the superfluid and
disordered phases, and estimate the quantum critical point (QCP). Our results
on the ground state reveal the existence of the Bose glass phase. Finally, we
discuss what the value of the variance at the QCP indicates from the viewpoint
of percolation.Comment: 7 pages, 9 figures, accepted for publication in JPS
Extreme Type-II Superconductors in a Magnetic Field: A Theory of Critical Fluctuations
A theory of critical fluctuations in extreme type-II superconductors
subjected to a finite but weak external magnetic field is presented. It is
shown that the standard Ginzburg-Landau representation of this problem can be
recast, with help of a novel mapping, as a theory of a new "superconductor", in
an effective magnetic field whose overall value is zero, consisting of the
original uniform field and a set of neutralizing unit fluxes attached to
fluctuating vortex lines. The long distance behavior is related to
the anisotropic gauge theory in which the original magnetic field plays the
role of "charge". The consequences of this "gauge theory" scenario for the
critical behavior in high temperature superconductors are explored in detail,
with particular emphasis on questions of 3D XY vs. Landau level scaling,
physical nature of the vortex "line liquid" and the true normal state, and
fluctuation thermodynamics and transport. A "minimal" set of requirements for
the theory of vortex-lattice melting in the critical region is also proposed
and discussed.Comment: 28 RevTeX pages, 4 .ps figures; appendix A added, additional
references, streamlined Secs. IV and V in response to referees' comment
The A-B transition in superfluid helium-3 under confinement in a thin slab geometry
The influence of confinement on the topological phases of superfluid 3He is
studied using the torsional pendulum method. We focus on the phase transition
between the chiral A-phase and the time-reversal-invariant B-phase, motivated
by the prediction of a spatiallymodulated (stripe) phase at the A-B phase
boundary. We confine superfluid 3He to a single 1.08 {\mu}m thick nanofluidic
cavity incorporated into a high-precision torsion pendulum, and map the phase
diagram between 0.1 and 5.6 bar. We observe only small supercooling of the
A-phase, in comparison to bulk or when confined in aerogel. This has a
non-monotonic pressure dependence, suggesting that a new intrinsic B-phase
nucleation mechanism operates under confinement, mediated by the putative
stripe phase. Both the phase diagram and the relative superfluid fraction of
the A and B phases, show that strong coupling is present at all pressures, with
implications for the stability of the stripe phase.Comment: 6 figures, 1 table + supplemental informatio
Recommended from our members
Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin
We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the {sup 3}He solute in a superfluid {sup 3}He--{sup 4}He solution. At low temperatures, the superfluid {sup 4}He is in its quantum ground state, and therefore is thermodynamically inert, while the {sup 3}He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the {sup 3}He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the {sup 3}He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs