24 research outputs found

    Phase diagram of superfluid 3He in "nematically ordered" aerogel

    Full text link
    Results of experiments with liquid 3He immersed in a new type of aerogel are described. This aerogel consists of Al2O3 strands which are nearly parallel to each other, so we call it as a "nematically ordered" aerogel. At all used pressures a superfluid transition was observed and a superfluid phase diagram was measured. Possible structures of the observed superfluid phases are discussed.Comment: 6 pages, 8 figures. Submitted to Pis'ma v ZhETF (JETP Letters

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript

    Renormalization Group Study of the Intrinsic Finite Size Effect in 2D Superconductors

    Full text link
    Vortices in a thin-film superconductor interact logarithmically out to a distance on the order of the two-dimensional (2D) magnetic penetration depth λ⊥\lambda_\perp, at which point the interaction approaches a constant. Thus, because of the finite λ⊥\lambda_\perp, the system exhibits what amounts to an {\it intrinsic} finite size effect. It is not described by the 2D Coulomb gas but rather by the 2D Yukawa gas (2DYG). To study the critical behavior of the 2DYG, we map the 2DYG to the massive sine-Gordon model and then perform a renormalization group study to derive the recursion relations and to verify that λ⊥\lambda_\perp is a relevant parameter. We solve the recursion relations to study important physical quantities for this system including the renormalized stiffness constant and the correlation length. We also address the effect of current on this system to explain why finite size effects are not more prevalent in experiments given that the 2D magnetic penetration depth is a relevant parameter.Comment: 8 pages inRevTex, 5 embedded EPS figure

    Study of Kosterlitz-Thouless transition of Bose systems governed by a random potential using quantum Monte Carlo simulations

    Full text link
    We perform quantum Monte Carlo simulations to study the 2D hard-core Bose-Hubbard model in a random potential. Our motivation is to investigate the effects of randomness on the Kosterlitz--Thouless (KT) transition. The chemical potential is assumed to be random, by site, with a Gaussian distribution. The KT transition is confirmed by a finite-size analysis of the superfluid density and the power-law decay of the correlation function. By varying the variance of the Gaussian distribution, we find that the transition temperature decreases as the variance increases. We obtain the phase diagram showing the superfluid and disordered phases, and estimate the quantum critical point (QCP). Our results on the ground state reveal the existence of the Bose glass phase. Finally, we discuss what the value of the variance at the QCP indicates from the viewpoint of percolation.Comment: 7 pages, 9 figures, accepted for publication in JPS

    Extreme Type-II Superconductors in a Magnetic Field: A Theory of Critical Fluctuations

    Full text link
    A theory of critical fluctuations in extreme type-II superconductors subjected to a finite but weak external magnetic field is presented. It is shown that the standard Ginzburg-Landau representation of this problem can be recast, with help of a novel mapping, as a theory of a new "superconductor", in an effective magnetic field whose overall value is zero, consisting of the original uniform field and a set of neutralizing unit fluxes attached to NΦN_{\Phi} fluctuating vortex lines. The long distance behavior is related to the anisotropic gauge theory in which the original magnetic field plays the role of "charge". The consequences of this "gauge theory" scenario for the critical behavior in high temperature superconductors are explored in detail, with particular emphasis on questions of 3D XY vs. Landau level scaling, physical nature of the vortex "line liquid" and the true normal state, and fluctuation thermodynamics and transport. A "minimal" set of requirements for the theory of vortex-lattice melting in the critical region is also proposed and discussed.Comment: 28 RevTeX pages, 4 .ps figures; appendix A added, additional references, streamlined Secs. IV and V in response to referees' comment

    The A-B transition in superfluid helium-3 under confinement in a thin slab geometry

    Get PDF
    The influence of confinement on the topological phases of superfluid 3He is studied using the torsional pendulum method. We focus on the phase transition between the chiral A-phase and the time-reversal-invariant B-phase, motivated by the prediction of a spatiallymodulated (stripe) phase at the A-B phase boundary. We confine superfluid 3He to a single 1.08 {\mu}m thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A-phase, in comparison to bulk or when confined in aerogel. This has a non-monotonic pressure dependence, suggesting that a new intrinsic B-phase nucleation mechanism operates under confinement, mediated by the putative stripe phase. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase.Comment: 6 figures, 1 table + supplemental informatio

    Thermal Performance of Stirling-Cycle Cryocoolers: A Comparison of JPL-Tested Coolers

    No full text

    Cryocooler Coldfinger Heat Interceptor

    No full text
    corecore