4,362 research outputs found
Light propagation in nanorod arrays
We study propagation of TM- and TE-polarized light in two-dimensional arrays
of silver nanorods of various diameters in a gelatin background. We calculate
the transmittance, reflectance and absorption of arranged and disordered
nanorod arrays and compare the exact numerical results with the predictions of
the Maxwell-Garnett effective-medium theory. We show that interactions between
nanorods, multipole contributions and formations of photonic gaps affect
strongly the transmittance spectra that cannot be accounted for in terms of the
conventional effective-medium theory. We also demonstrate and explain the
degradation of the transmittance in arrays with randomly located rods as well
as weak influence of their fluctuating diameter. For TM modes we outline the
importance of skin-effect, which causes the full reflection of the incoming
light. We then illustrate the possibility of using periodic arrays of nanorods
as high-quality polarizers.Comment: 6 pages, 7 figure
Secure gated detection scheme for quantum cryptography
Several attacks have been proposed on quantum key distribution systems with
gated single-photon detectors. The attacks involve triggering the detectors
outside the center of the detector gate, and/or using bright illumination to
exploit classical photodiode mode of the detectors. Hence a secure detection
scheme requires two features: The detection events must take place in the
middle of the gate, and the detector must be single-photon sensitive. Here we
present a technique called bit-mapped gating, which is an elegant way to force
the detections in the middle of the detector gate by coupling detection time
and quantum bit error rate. We also discuss how to guarantee single-photon
sensitivity by directly measuring detector parameters. Bit-mapped gating also
provides a simple way to measure the detector blinding parameter in security
proofs for quantum key distribution systems with detector efficiency mismatch,
which up until now has remained a theoretical, unmeasurable quantity. Thus if
single-photon sensitivity can be guaranteed within the gates, a detection
scheme with bit-mapped gating satisfies the assumptions of the current security
proofs.Comment: 7 pages, 3 figure
The measurement of the winds near the ocean surface with a radiometer-scatterometer on Skylab
The author has identified the following significant results. There were a total of twenty-six passes in the ZLV mode that yielded useful data. Six were in the in-track noncontiguous mode; all others were in the cross-track noncontiguous mode. The wind speed and direction, as effectively determined in a neutral atmosphere at 19.5 m above the sea surface, were found for each cell scanned by S193. It is shown how the passive microwave measurements were used both to compute the attenuation of the radar beam and to determine those cells where the backscatter measurement was suspect. Given the direction of the wind from some independent source, with the typical accuracy of measurement by available meteorological methods, a backscatter measurement at a nadir angle of 50, 43, or 32 deg can be used to compute the speed of the wind averaged over the illuminated area
Management of intestinal transplantation in humans
We report here the clinical experience and management guidelines for the nine consecutive cases who received either an isolated small intestinal graft (n = 1) or an intestine liver combination at the University of Pittsburgh, with FK 506 being the basic immunosuppressive drug therapy
The quantum mechanical geometric phase of a particle in a resonant vibrating cavity
We study the general-setting quantum geometric phase acquired by a particle
in a vibrating cavity. Solving the two-level theory with the rotating-wave
approximation and the SU(2) method, we obtain analytic formulae that give
excellent descriptions of the geometric phase, energy, and wavefunction of the
resonating system. In particular, we observe a sudden -jump in the
geometric phase when the system is in resonance. We found similar behaviors in
the geometric phase of a spin-1/2 particle in a rotating magnetic field, for
which we developed a geometrical model to help visualize its evolution.Comment: 15pages,6figure
- …