51 research outputs found

    Optical Response of Solid CO2_2 as a Tool for the Determination of the High Pressure Phase

    Full text link
    We report first-principles calculations of the frequency dependent linear and second-order optical properties of the two probable extended-solid phases of CO2_2--V, i.e. I4ˉ2dI\bar42d and P212121P2_12_12_1. Compared to the parent CmcaCmca phase the linear optical susceptibility of both phases is much smaller. We find that I4ˉ2dI\bar42d and P212121P2_12_12_1 differ substantially in their linear optical response in the higher energy regime. The nonlinear optical responses of the two possible crystal structures differ by roughly a factor of five. Since the differences in the nonlinear optical spectra are pronounced in the low energy regime, i.e. below the band gap of diamond, measurements with the sample inside the diamond anvil cell are feasible. We therefore suggest optical experiments in comparison with our calculated data as a tool for the unambiguous identification of the high pressure phase of CO2_2.Comment: 4 pages 2 fig

    Formation of the -N(NO)N(NO)- polymer at high pressure and stabilization at ambient conditions

    Full text link
    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N(2)O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature)
    • …
    corecore