914 research outputs found

    Enhanced Transmission Through Disordered Potential Barrier

    Full text link
    Effect of weak disorder on tunneling through a potential barrier is studied analytically. A diagrammatic approach based on the specific behavior of subbarrier wave functions is developed. The problem is shown to be equivalent to that of tunneling through rectangular barriers with Gaussian distributed heights. The distribution function for the transmission coefficient TT is derived, and statistical moments \left are calculated. The surprising result is that in average disorder increases both tunneling conductance and resistance.Comment: 10 pages, REVTeX 3.0, 2 figures available upon reques

    Paradoxical acclimation responses in the thermal performance of insect immunity.

    Get PDF
    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms\u27 response to climate change

    Flux-free conductance modulation in a helical Aharonov-Bohm interferometer

    Full text link
    A novel conductance oscillation in a twisted quantum ring composed of a helical atomic configuration is theoretically predicted. Internal torsion of the ring is found to cause a quantum phase shift in the wavefunction that describes the electron's motion along the ring. The resulting conductance oscillation is free from magnetic flux penetrating inside the ring, which is in complete contrast with the ordinary Aharonov-Bohm effect observed in untwisted quantum rings.Comment: 10 pages, 4 figure

    Localization-delocalization transition in the quasi-one-dimensional ladder chain with correlated disorder

    Full text link
    The generalization of the dimer model on a two-leg ladder is defined and investigated both, analytically and numerically. For the closed system we calculate the Landauer resistance analytically and found the presence of the point of delocalization at the band center which is confirmed by the numerical calculations of the Lyapunov exponent. We calculate also analytically the localization length index and present the numerical investigations of the density of states (DOS). For the open counterpart of this model the distribution of the Wigner delay times is calculated numerically. It is shown how the localization-delocalization transition manifest itself in the behavior of the distribution.Comment: 9 pages, 10 figures, Revte

    Universality of the Wigner time delay distribution for one-dimensional random potentials

    Full text link
    We show that the distribution of the time delay for one-dimensional random potentials is universal in the high energy or weak disorder limit. Our analytical results are in excellent agreement with extensive numerical simulations carried out on samples whose sizes are large compared to the localisation length (localised regime). The case of small samples is also discussed (ballistic regime). We provide a physical argument which explains in a quantitative way the origin of the exponential divergence of the moments. The occurence of a log-normal tail for finite size systems is analysed. Finally, we present exact results in the low energy limit which clearly show a departure from the universal behaviour.Comment: 4 pages, 3 PostScript figure

    Two-dimensional atom trapping in field-induced adiabatic potentials

    Get PDF
    We show how to create a novel two-dimensional trap for ultracold atoms from a conventional magnetic trap. We achieve this by utilizing rf-induced adiabatic potentials to enhance the trapping potential in one direction. We demonstrate the loading process and discuss the experimental conditions under which it might be possible to prepare a 2D Bose condensate. A scheme for the preparation of coherent matterwave bubbles is also discussed

    Role of strontium cations in ZSM-5 zeolite in the methanol-to-hydrocarbons reaction

    Get PDF
    The selectivity of the methanol-to-hydrocarbons (MTH) reaction can be tuned by modifying zeolite catalysts with alkaline earth metals, which typically increase propylene selectivity and catalyst stability. Here we employed Sr2+ as its higher atomic number in comparison to the zeolite T atoms facilitates characterization by scanning transmission electron microscopy and operando X-ray absorption spectroscopy. Sr2+ dispersed in the ZSM-5 micropores coordinates water, methanol, and dimethyl ether during the MTH reaction. Complementary characterization with nuclear magnetic resonance spectroscopy, thermogravimetric analysis combined with mass spectrometry, operando infrared spectroscopy, and X-ray diffraction points to the retention of substantially more adsorbates during the MTH reaction in comparison to Sr-free zeolites. Our findings support the notion that alkaline earth metals modify the porous reaction environment such that the olefin cycle is favored over the aromatic cycle in the MTH, explaining the increased propylene yield and lower deactivation rate

    Características tecnológicas de variedades de cana-de-açúcar destinadas para indústria e forragem quando cultivadas em Argissolo.

    Get PDF
    A produtividade agrícola da cana-de-açúcar tem apresentado aumentos expressivos no País, graças à criação de novas variedades, manejo mais adequado do solo, uso de resíduos industriais na lavoura e aplicação racional de adubos e corretivos. Objetivou-se neste trabalho avaliar características tecnológicas de cana-de-açúcar destinada para indústria e forragem quando cultivadas em Argissolo na região do Oeste Paulista. O experimento foi realizado nas dependências da Central de Álcool de Lucélia, localizada no município de Lucélia, Estado de São Paulo. A instalação ocorreu no mês de junho de 2004 e foi utilizado o delineamento experimental em blocos casualizados, com seis tratamentos (variedades) em quatro repetições. Por ocasião da colheita, foram retirados ao acaso 12 colmos inteiros de cana-de-açúcar em cada parcela e foram avaliadas as seguintes características tecnológicas, Brix (% caldo), Pol (% caldo), pureza (%), ATR (Kg açúcar/ t cana), fibra (% cana), além da produção de colmos (TCH). Variedades que geralmente são destinadas à indústria, também podem apresentar excelente potencial forrageiro

    Localization fom conductance in few-channel disordered wires

    Full text link
    We study localization in two- and three channel quasi-1D systems using multichain tight-binding Anderson models with nearest-neighbour interchain hopping. In the three chain case we discuss both the case of free- and that of periodic boundary conditions between the chains. The finite disordered wires are connected to ideal leads and the localization length is defined from the Landauer conductance in terms of the transmission coefficients matrix. The transmission- and reflection amplitudes in properly defined quantum channels are obtained from S-matrices constructed from transfer matrices in Bloch wave bases for the various quasi-1D systems. Our exact analytic expressions for localization lengths for weak disorder reduce to the Thouless expression for 1D systems in the limit of vanishing interchain hopping. For weak interchain hopping the localization length decreases with respect to the 1D value in all three cases. In the three-channel cases it increases with interchain hopping over restricted domains of large hopping

    Coexisting Pulses in a Model for Binary-Mixture Convection

    Full text link
    We address the striking coexistence of localized waves (`pulses') of different lengths which was observed in recent experiments and full numerical simulations of binary-mixture convection. Using a set of extended Ginzburg-Landau equations, we show that this multiplicity finds a natural explanation in terms of the competition of two distinct, physical localization mechanisms; one arises from dispersion and the other from a concentration mode. This competition is absent in the standard Ginzburg-Landau equation. It may also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded
    corecore