193 research outputs found

    Response of an atomic Bose-Einstein condensate to a rotating elliptical trap

    Full text link
    We investigate numerically the response of an atomic Bose-Einstein condensate to a weakly-elliptical rotating trap over a large range of rotation frequencies. We analyse the quadrupolar shape oscillation excited by rotation, and discriminate between its stable and unstable regimes. In the latter case, where a vortex lattice forms, we compare with experimental observations and find good agreement. By examining the role of thermal atoms in the process, we infer that the process is temperature-independent, and show how terminating the rotation gives control over the number of vortices in the lattice. We also study the case of critical rotation at the trap frequency, and observe large centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure

    On the applicability of the classical dipole-dipole interaction for polar Bose-Einstein condensates

    Full text link
    We argue that the classical form of the dipole-dipole interaction energy cannot be used to model the interaction of the bosons in a dilute Bose-Einstein condensate made of polar atoms. This fact is due to convergence of integrals, if no additional restrictions are introduced. The problem can be regularized, in particular, by introducing a hard sphere model. As an example we propose a regularization consistent with the long range behavior of the effective potential and with the scattering amplitude of the fast particles.Comment: submitted to Phys. Re

    Luttinger model approach to interacting one-dimensional fermions in a harmonic trap

    Full text link
    A model of interacting one--dimensional fermions confined to a harmonic trap is proposed. The model is treated analytically to all orders of the coupling constant by a method analogous to that used for the Luttinger model. As a first application, the particle density is evaluated and the behavior of Friedel oscillations under the influence of interactions is studied. It is found that attractive interactions tend to suppress the Friedel oscillations while strong repulsive interactions enhance the Friedel oscillations significantly. The momentum distribution function and the relation of the model interaction to realistic pair interactions are also discussed.Comment: 12 pages latex, 1 eps-figure in 1 tar file, extended Appendix, added and corrected references, new eq. (53), corrected typos, accepted for PR

    Novel Mechanism of Supersolid of Ultracold Polar Molecules in Optical Lattices

    Full text link
    We study the checkerboard supersolid of the hard-core Bose-Hubbard model with the dipole-dipole interaction. This supersolid is different from all other supersolids found in lattice models in the sense that superflow paths through which interstitials or vacancies can hop freely are absent in the crystal. By focusing on repulsive interactions between interstitials, we reveal that the long-range tail of the dipole-dipole interaction have the role of increasing the energy cost of domain wall formations. This effect produces the supersolid by the second-order hopping process of defects. We also perform exact quantum Monte Carlo simulations and observe a novel double peak structure in the momentum distribution of bosons, which is a clear evidence for supersolid. This can be measured by the time-of-flight experiment in optical lattice systems

    Probing dipolar effects with condensate shape oscillation

    Full text link
    We discuss the low energy shape oscillations of a magnetic trapped atomic condensate including the spin dipole interaction. When the nominal isotropic s-wave interaction strength becomes tunable through a Feshbach resonance (e.g. as for 85^{85}Rb atoms), anisotropic dipolar effects are shown to be detectable under current experimental conditions [E. A. Donley {\it et al.}, Nature {\bf 412}, 295 (2001)].Comment: revised version, submitte

    Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields

    Full text link
    The interaction potential of a two-dimensional system of excitons with spatially separated electron-hole layers is considered in the strong magnetic field limit. The excitons are assumed to have free dynamics in the xx-yy plane, while being constrained or `polarized' in the zz direction. The model simulates semiconductor double layer systems under strong magnetic field normal to the layers. The {\em residual} interaction between excitons exhibits interesting features, arising from the coupling of the center-of-mass and internal degrees of freedom of the exciton in the magnetic field. This coupling induces a dynamical dipole moment proportional to the center-of-mass magnetic moment of the exciton. We show the explicit dependence of the inter-exciton potential matrix elements, and discuss the underlying physics. The unusual features of the interaction potential would be reflected in the collective response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi

    Nonlinear Coherent Modes of Trapped Bose-Einstein Condensates

    Full text link
    Nonlinear coherent modes are the collective states of trapped Bose atoms, corresponding to different energy levels. These modes can be created starting from the ground state condensate that can be excited by means of a resonant alternating field. A thorough theory for the resonant excitation of the coherent modes is presented. The necessary and sufficient conditions for the feasibility of this process are found. Temporal behaviour of fractional populations and of relative phases exhibits dynamic critical phenomena on a critical line of the parametric manifold. The origin of these critical phenomena is elucidated by analyzing the structure of the phase space. An atomic cloud, containing the coherent modes, possesses several interesting features, such as interference patterns, interference current, spin squeezing, and massive entanglement. The developed theory suggests a generalization of resonant effects in optics to nonlinear systems of Bose-condensed atoms.Comment: 26 pages, Revtex, no figure

    Spin Dynamics and Orbital State in LaTiO_3

    Full text link
    A neutron scattering study of the Mott-Hubbard insulator LaTiO3_{3} (TN=132_{{\rm N}}=132 K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant J=15.5J=15.5 meV and a small Dzyaloshinskii-Moriya interaction (D=1.1D=1.1 meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO3_{3}.Comment: final version, Phys. Rev. Lett. 85, 3946 (2000

    Formation of a molecular Bose-Einstein condensate and an entangled atomic gas by Feshbach resonance

    Full text link
    Processes of association in an atomic Bose-Einstein condensate, and dissociation of the resulting molecular condensate, due to Feshbach resonance in a time-dependent magnetic field, are analyzed incorporating non-mean-field quantum corrections and inelastic collisions. Calculations for the Na atomic condensate demonstrate that there exist optimal conditions under which about 80% of the atomic population can be converted to a relatively long-lived molecular condensate (with lifetimes of 10 ms and more). Entangled atoms in two-mode squeezed states (with noise reduction of about 30 dB) may also be formed by molecular dissociation. A gas of atoms in squeezed or entangled states can have applications in quantum computing, communications, and measurements.Comment: LaTeX, 5 pages with 4 figures, uses REVTeX

    Collapse arrest and soliton stabilization in nonlocal nonlinear media

    Get PDF
    We investigate the properties of localized waves in systems governed by nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric, but can be of completely arbitrary shape. We use variational techniques to find the soliton solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
    • 

    corecore