3,450 research outputs found

    Determining the squark mass at the LHC

    Full text link
    We propose a new way to determine the squark mass based on the shape of di-jet invariant mass distribution of supersymmetry (SUSY) di-jet events at the Large Hadron Collider (LHC). Our algorithm, which is based on event kinematics, requires that the branching ratio B(q~qz~1)B(\tilde{q} \rightarrow q \tilde{z}_1) is substantial for at least some types of squarks, and that mz~12/mq~21m_{\tilde{z}_1}^2/m_{\tilde{q}}^2 \ll 1. We select di-jet events with no isolated leptons, and impose cuts on the total jet transverse energy, ETtot=ET(j1)+ET(j2)E_T^{tot}=E_T(j_1)+E_T(j_2), on α=ET(j2)/mjj\alpha = E_T(j_2)/m_{jj}, and on the azimuthal angle between the two jets to reduce SM backgrounds. The shape of the resulting di-jet mass distribution depends sensitively on the squark mass, especially if the integrated luminosity is sufficient to allow a hard enough cut on ETtotE_T^{tot} and yet leave a large enough signal to obtain the mjjm_{jj} distribution. We simulate the signal and Standard Model (SM) backgrounds for 100 fb1^{-1} integrated luminosity at 14 TeV requiring ETtot>700E_T^{tot}> 700 GeV. We show that it should be possible to extract mq~m_{\tilde{q}} to within about 3% at 95% CL --- similar to the precision obtained using mT2m_{T2} --- from the di-jet mass distribution if mq~650m_{\tilde{q}} \sim 650 GeV, or to within 5\sim 5% if mq~1m_{\tilde{q}}\sim 1 TeV.Comment: 20 pages, 9 figures. Footnote added, updated reference

    Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective

    Full text link
    A unified vision of the symmetric coupling of angular momenta and of the quantum mechanical volume operator is illustrated. The focus is on the quantum mechanical angular momentum theory of Wigner's 6j symbols and on the volume operator of the symmetric coupling in spin network approaches: here, crucial to our presentation are an appreciation of the role of the Racah sum rule and the simplification arising from the use of Regge symmetry. The projective geometry approach permits the introduction of a symmetric representation of a network of seven spins or angular momenta. Results of extensive computational investigations are summarized, presented and briefly discussed.Comment: 15 pages, 10 figures, presented at ICCSA 2014, 14th International Conference on Computational Science and Application

    Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Get PDF
    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.V Michaud-Belleau, H Bergeron, P S Light, N B Hébert, J D Deschênes, A N Luiten and J Genes

    Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles

    Get PDF
    We examine a network of learners which address the same classification task but must learn from different data sets. The learners cannot share data but instead share their models. Models are shared only one time so as to preserve the network load. We introduce DELCO (standing for Decentralized Ensemble Learning with COpulas), a new approach allowing to aggregate the predictions of the classifiers trained by each learner. The proposed method aggregates the base classifiers using a probabilistic model relying on Gaussian copulas. Experiments on logistic regressor ensembles demonstrate competing accuracy and increased robustness in case of dependent classifiers. A companion python implementation can be downloaded at https://github.com/john-klein/DELC

    Status of the PICASSO Project

    Full text link
    The Picasso project is a dark matter search experiment based on the superheated droplet technique. Preliminary runs performed at the Picasso Lab in Montreal have showed the suitability of this detection technique to the search for weakly interacting cold dark matter particles. In July 2002, a new phase of the project started. A batch of six 1-liter detectors with an active mass of approximately 40g was installed in a gallery of the SNO observatory in Sudbury, Ontario, Canada at a depth of 6,800 feet (2,070m). We give a status report on the new experimental setup, data analysis, and preliminary limits on spin-dependent neutralino interaction cross section.Comment: 3 pages, 2 figures. To appear in the Proceedings of the TAUP 2003 conference, 5-9 September, 2003, University of Washington, Seattle, US

    UV laser controlled quantum well intermixing in InAlGaAs/GaAs heterostructures

    Get PDF
    Abstract : The influence of surface irradiation of GaAs with a KrF excimer laser on the magnitude of the quantum well intermixing (QWI) effect has been investigated on GaAs/AlGaAs and GaAs/AlGaAs/InAlGaAs QWs heterostructures. The selective area irradiation through a SiOx mask was carried out in an atmospheric environment. Following the 1000 pulses irradiation at 100 mJ/cm2, the samples were annealed in a rapid thermal annealing furnace at 900 °C. Photoluminescence mapping and cathodoluminescence measurements show that significant laser-induced suppression of the QWI process can be achieved with lateral resolution of the order of 1μm

    Propositional Dynamic Logic for Message-Passing Systems

    Full text link
    We examine a bidirectional propositional dynamic logic (PDL) for finite and infinite message sequence charts (MSCs) extending LTL and TLC-. By this kind of multi-modal logic we can express properties both in the entire future and in the past of an event. Path expressions strengthen the classical until operator of temporal logic. For every formula defining an MSC language, we construct a communicating finite-state machine (CFM) accepting the same language. The CFM obtained has size exponential in the size of the formula. This synthesis problem is solved in full generality, i.e., also for MSCs with unbounded channels. The model checking problem for CFMs and HMSCs turns out to be in PSPACE for existentially bounded MSCs. Finally, we show that, for PDL with intersection, the semantics of a formula cannot be captured by a CFM anymore
    corecore