62 research outputs found

    Non-monotonic magnetoresistance of two-dimensional electron systems in the ballistic regime

    Full text link
    We report experimental observations of a novel magnetoresistance (MR) behavior of two-dimensional electron systems in perpendicular magnetic field in the ballistic regime, for k_BT\tau/\hbar>1. The MR grows with field and exhibits a maximum at fields B>1/\mu, where \mu is the electron mobility. As temperature increases the magnitude of the maximum grows and its position moves to higher fields. This effect is universal: it is observed in various Si- and GaAs- based two-dimensional electron systems. We compared our data with recent theory based on the Kohn anomaly modification in magnetic field, and found qualitative similarities and discrepancies.Comment: 4 pages 3 figure

    Optical and transport properties of short period InAs/GaAs superlattices near quantum dot formation

    Full text link
    We have investigated the optical and transport properties of MBE grown short-period superlattices of InAs/GaAs with different numbers of periods (3 <= N <= 24) and a total thickness 14 nm. Bandstructure calculations show that these superlattices represent a quantum well with average composition In_0.16Ga_0.84As. The electron wave functions are only slightly modulated by the superlattice potential as compared to a single quantum well with the same composition, which was grown as a reference sample. The photoluminescence, the resistance, the Shubnikov-de Haas effect and the Hall effect have been measured as a function of the InAs layer thickness Q in the range 0.33 <= Q <= 2.7 monolayers (ML). The electron densities range from 6.8 to 11.5x10^11 cm^-2 for Q <= 2.0 ML. The photoluminescence and magnetotransport data show that only one subband is occupied. When Q >= 2.7 ML quantum dots are formed and the metallic type of conductivity changes to variable range hopping conductivity.Comment: 15 pages (incl.7 figures); pdf file; submitted to Semicond. Sci. Techno

    Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier

    Full text link
    Shallow GaAs/InGaAs/GaAs quantum well structures with and without a three monolayer thick AlAs central barrier have been investigated for different well widths and Si doping levels. The transport parameters are determined by resistivity measurements in the temperature range 4-300 K and magnetotransport in magnetic fields up to 12 T. The (subband) carrier concentrations and mobilities are extracted from the Hall data and Shubnikov-de Haas oscillations. We find that the transport parameters are strongly affected by the insertion of the AlAs central barrier. Photoluminescence spectra, measured at 77 K, show an increase of the transition energies upon insertion of the barrier. The transport and optical data are analyzed with help of self-consistent calculations of the subband structure and envelope wave functions. Insertion of the AlAs central barrier changes the spatial distribution of the electron wave functions and leads to the formation of hybrid states, i.e. states which extend over the InGaAs and the delta-doped layer quantum wells.Comment: 14 pages, pdf fil

    A Model for the Voltage Steps in the Breakdown of the Integer Quantum Hall Effect

    Full text link
    In samples used to maintain the US resistance standard the breakdown of the dissipationless integer quantum Hall effect occurs as a series of dissipative voltage steps. A mechanism for this type of breakdown is proposed, based on the generation of magneto-excitons when the quantum Hall fluid flows past an ionised impurity above a critical velocity. The calculated generation rate gives a voltage step height in good agreement with measurements on both electron and hole gases. We also compare this model to a hydrodynamic description of breakdown.Comment: 4 pages including 3 figure

    Sn delta-doping in GaAs

    Full text link
    We have prepared a number of GaAs structures delta-doped by Sn using the well-known molecular beam epitaxy growth technique. The samples obtained for a wide range of Sn doping densities were characterised by magnetotransport experiments at low temperatures and in high magnetic fields up to 38 T. Hall-effect and Shubnikov-de Haas measurements show that the electron densities reached are higher than for other delta-dopants, like Si and Be. The maximum carrier density determined by the Hall effect equals 8.4x10^13 cm^-2. For all samples several Shubnikov-de Haas frequencies were observed, indicating the population of multiple subbands. The depopulation fields of the subbands were determined by measuring the magnetoresistance with the magnetic field in the plane of the delta-layer. The experimental results are in good agreement with selfconsistent bandstructure calculations. These calculation shows that in the sample with the highest electron density also the conduction band at the L point is populated.Comment: 11 pages text (ps), 9 figures (ps), submitted to Semicon. Science Tech

    >

    No full text

    Giant Increase of Electron Saturated Drift Velocity in a MODFET Channel

    No full text
    corecore