406 research outputs found

    Ultrahigh energy neutrino scattering onto relic light neutrinos in galactic halo as a possible source of highest energy extragalactic cosmic rays

    Get PDF
    The diffuse relic neutrinos with light mass are transparent to Ultrahigh energy (UHE) neutrinos at thousands EeV, born by photoproduction of pions by UHE protons on relic 2.73 K BBR radiation and originated in AGNs at cosmic distances. However these UHE ν\nus may interact with those (mainly heaviest νμr\nu_{\mu_r}, ντr\nu_{\tau_r} and respective antineutrinos) clustered into HDM galactic halos. UHE photons or protons, secondaries of ννr\nu\nu_r scattering, might be the final observed signature of such high-energy chain reactions and may be responsible of the highest extragalactic cosmic-ray (CR) events. The chain-reactions conversion efficiency, ramifications and energetics are considered for the October 1991 CR event at 320 EeV observed by the Fly's Eye detector in Utah. These quantities seem compatible with the distance, direction and power (observed at MeV gamma energies) of the Seyfert galaxy MCG 8-11-11. The ννr\nu\nu_r interaction probability is favoured by at least three order of magnitude with respect to a direct ν\nu scattering onto the Earth atmosphere. Therefore, it may better explain the extragalactic origin of the puzzling 320 EeV event, while offering indirect evidence of a hot dark galactic halo of light (i.e., mν∼m_\nu\sim tens eV) neutrinos, probably of tau flavour.Comment: 25 pages, 1 figure minor corrections, updated references. In press in AP

    Signature of relic heavy stable neutrinos in underground experiments

    Get PDF
    Considering heavy stable neutrinos of 4th generation we calculate the relic density of such neutrinos in the Universe. Taking into account the condensation of heavy neutrinos in the Galaxy and applying the results of calculations to experimental data from underground experiments on search for WIMPs in elastic neutral current scattering on nuclei we found an exclusion region of neutrino mass 60 GeV < m < 290 GeV. The bounds obtained from present underground experiments while confirming the previous bounds derived from analysis of cosmic ray spectra are more relible ones. We discuss also the first indication of elastic scattering induced by WIMP in DAMA experiment finding a very narrow window of neutrino mass 45 GeV < m < 50 GeV compatible with the possible signal rate in the detector.Comment: 12 pages, 3 figure

    Possible Effects of the Existence of the 4th Generation Neutrino

    Get PDF
    The 4th generation of fermions predicted by the phenomenology of heterotic string models can possess new strictly conserved charge, which leads, in particular, to the hypothesis of the existence of the 4th generation massive stable neutrino. The compatibility of this hypothesis with the results of underground experiment DAMA searching for weakly interactive particles of dark matter and with the EGRET measurements of galactic gamma--background at energies above 1 GeV fixes the possible mass of the 4th neutrino at the value about 50 GeV. The possibility to test the hypothesis in accelerator experiments is considered. Positron signal from the annihilation of relic massive neutrinos in the galactic halo is calculated and is shown to be accessible for planned cosmic ray experiments.Comment: 10 pages, 4 PostScript figure, Latex2

    Inverse Compton scattering on laser beam and monochromatic isotropic radiation

    Get PDF
    Most of the known literature on Inverse Compton Scattering (ICS) is based on earliest theoretical attempts and later approximations led by F.C.Jones and J.B.Blumenthal. We found an independent and more general analytical procedure which provide both relativistic and ultrarelativistic limits for ICS. These new analytical expressions can be derived in a straightforward way and they contain the previously reminded Jones' results. Our detailed solutions may be probed by already existing as well future ICS experiments

    Shadows of Relic Neutrino Masses and Spectra on Highest Energy GZK Cosmic Rays

    Full text link
    The Ultra High Energy (UHE) neutrino scattering onto relic cosmic neutrinos in galactic and local halos offers an unique way to overcome GZK cut-off. The UHE nu secondary of UHE photo-pion decays may escape the GZK cut-off and travel on cosmic distances hitting local light relic neutrinos clustered in dark halos. The Z resonant production and the competitive W^+W^-, ZZ pair production define a characteristic imprint on hadronic consequent UHECR spectra. This imprint keeps memory both of the primary UHE nu spectra as well as of the possible relic neutrino masses values, energy spectra and relic densities. Such an hadronic showering imprint should reflect into spectra morphology of cosmic rays near and above GZK 10^{19}-10^{21}eV cut-off energies. A possible neutrino degenerate masses at eVs or a more complex and significant neutrino mass split below or near Super-Kamiokande \triangle m_{\nu_{SK}}= 0.1 eV masses might be reflected after each corresponding Z peak showering, into new twin unexpected UHECR flux modulation behind GZK energies: E_{p} sim 3(frac{triangle m_{\nu_{SK}}}/m_{\nu}10^{21}),eV. Other shadowsof lightest, nearly massless, neutrinos m_{nu_{2K} simeq 0.001eV simeq kT_{\nu}, their lowest relic temperatures, energies and densities might be also reflected at even higher energies edges near Grand Unification: E_{p} \sim 2.2(m_{\nu_{2K}/E_{\nu}})10^{23}, eV .Comment: 14 pages, 6 Figures,Invited Talk Heidelberg DARK 200

    Thermal effects on the absorption of ultra-high energy neutrinos by the cosmic neutrino background

    Full text link
    We use the formalism of finite-temperature field theory to study the interactions of ultra-high energy (UHE) cosmic neutrinos with the background of relic neutrinos and to derive general expressions for the UHE neutrino transmission probability. This approach allows us to take into account the thermal effects introduced by the momentum distribution of the relic neutrinos. We compare our results with the approximate expressions existing in the literature and discuss the influence of thermal effects on the absorption dips in the context of favoured neutrino mass schemes, as well as in the case of clustered relic neutrinos.Comment: 3 pages, 2 figures. Prepared for the Proceedings of the 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza (Spain), September 10-14, 200
    • …
    corecore