471 research outputs found

    Some Embeddings into the Morrey and Modified Morrey Spaces Associated with the Dunkl Operator

    Get PDF
    We consider the generalized shift operator, associated with the Dunkl operator Λα(f)(x)=(d/dx)f(x)+((2α+1)/x)((f(x)-f(-x))/2), α>-1/2. We study some embeddings into the Morrey space (D-Morrey space) Lp,λ,α, 0≀λ<2α+2 and modified Morrey space (modified D-Morrey space) L̃p,λ,α associated with the Dunkl operator on ℝ. As applications we get boundedness of the fractional maximal operator MÎČ, 0≀ÎČ<2α+2, associated with the Dunkl operator (fractional D-maximal operator) from the spaces Lp,λ,α to L∞(ℝ) for p=(2α+2-λ)/ÎČ and from the spaces L̃p,λ,α(ℝ) to L∞(ℝ) for (2α+2-λ)/ÎČ≀p≀(2α+2)/ÎČ

    Temperature- and quantum phonon effects on Holstein-Hubbard bipolarons

    Full text link
    The one-dimensional Holstein-Hubbard model with two electrons of opposite spin is studied using an extension of a recently developed quantum Monte Carlo method, and a very simple yet rewarding variational approach, both based on a canonically transformed Hamiltonian. The quantum Monte Carlo method yields very accurate results in the regime of small but finite phonon frequencies, characteristic of many strongly correlated materials such as, e.g., the cuprates and the manganites. The influence of electron-electron repulsion, phonon frequency and temperature on the bipolaron state is investigated. Thermal dissociation of the intersite bipolaron is observed at high temperatures, and its relation to an existing theory of the manganites is discussed.Comment: 12 pages, 7 figures; final version, accepted for publication in Phys. Rev.

    Quantum coherence and carriers mobility in organic semiconductors

    Full text link
    We present a model of charge transport in organic molecular semiconductors based on the effects of lattice fluctuations on the quantum coherence of the electronic state of the charge carrier. Thermal intermolecular phonons and librations tend to localize pure coherent states and to assist the motion of less coherent ones. Decoherence is thus the primary mechanism by which conduction occurs. It is driven by the coupling of the carrier to the molecular lattice through polarization and transfer integral fluctuations as described by the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent regime are modeled via the Anderson hamiltonian with correlated diagonal and non-diagonal disorder leading to the determination of the carrier localization length. This length defines the coherent extension of the ground state and determines, in turn, the diffusion range in the incoherent regime and thus the mobility. The transfer integral disorder of Troisi and Orlandi can also be incorporated. This model, based on the idea of decoherence, allowed us to predict the value and temperature dependence of the carrier mobility in prototypical organic semiconductors that are in qualitative accord with experiments

    Signatures of polaronic excitations in quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The optical properties of quasi-one-dimensional metallic LaTiO3.41_{3.41} are studied for the polarization along the aa and bb axes. With decreasing temperature modes appear along both directions suggestive for a phase transition. The broadness of these modes along the conducting axis might be due to the coupling of the phonons to low-energy electronic excitations across an energy gap. We observe a pronounced midinfrared band with a temperature dependence consistent with (interacting) polaron models. The polaronic picture is corroborated by the presence of strong electron-phonon coupling and the temperature dependence of the dc conductivity.Comment: 5 pages, 5 figure

    Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress.

    Get PDF
    Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a mitochondrial protein regulated by Hypoxia-inducible Factor-1α (HIF1α). Here we show that while HIGD1A resides in mitochondria during physiological hypoxia, severe metabolic stress, such as glucose starvation coupled with hypoxia, in addition to DNA damage induced by etoposide, triggers its nuclear accumulation. We show that nuclear localization of HIGD1A overlaps with that of AIF, and is dependent on the presence of BAX and BAK. Furthermore, we show that AIF and HIGD1A physically interact. Additionally, we demonstrate that nuclear HIGD1A is a potential marker of metabolic stress in vivo, frequently observed in diverse pathological states such as myocardial infarction, hypoxic-ischemic encephalopathy (HIE), and different types of cancer. In summary, we demonstrate a novel nuclear localization of HIGD1A that is commonly observed in human disease processes in vivo

    Polaron features of the one-dimensional Holstein Molecular Crystal Model

    Full text link
    The polaron features of the one-dimensional Holstein Molecular Crystal Model are investigated by improving a variational method introduced recently and based on a linear superposition of Bloch states that describe large and small polaron wave functions. The mean number of phonons, the polaron kinetic energy, the electron-phonon local correlation function, and the ground state spectral weight are calculated and discussed. A crossover regime between large and small polaron for any value of the adiabatic parameter ω0/t\omega_0/t is found and a polaron phase diagram is proposed.Comment: 12 pages, 2 figure

    Optical Evidence of Multiphase Coexistence in Single Crystalline (La,Pr,Ca)MnO3

    Full text link
    We investigated temperature (T)- and magnetic field-dependent optical conductivity spectra (\s\w) of a La_5/8-yPr_yCa_3/8MnO_3 (y~0.35) single crystal, showing intriguing phase coexistence at low T. At T_C < T < T_CO, a dominant charge-ordered phase produces a large optical gap energy of ~0.4 eV. At T < T_C, at least two absorption bands newly emerge below 0.4 eV. Analyses of (\s\w) indicate that the new bands should be attributed to a ferromagnetic metallic and a charge-disordered phase that coexist with the charge-ordered phase. This optical study clearly shows that La_5/8-yPrCa_3/8MnO_3 (y~0.35) is composed of multiphases that might have different lattice strains.Comment: A single file with 9 figures embedded, to appear in Phys. Rev.

    Polaronic Signatures in Mid-Infrared Spectra: Prediction for LaMnO3 and CaMnO3

    Full text link
    Hole-doped LaMnO3 and electron-doped CaMnO3 form self-trapped electronic states. The spectra of these states have been calculated using a two orbital (Mn eg Jahn-Teller) model, from which the non-adiabatic optical conductivity spectra are obtained. In both cases the optical spectrum contains weight in the gap region, whose observation will indicate the self-trapped nature of the carrier states. The predicted spectra are proportional to the concentration of the doped carriers in the dilute regime, with coefficients calculated with no further model parameters.Comment: 6 pages with 3 figures imbedde
    • 

    corecore