115 research outputs found

    Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media

    Full text link
    We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and showed good qualitative agreement with experimental data. Non-steady state invasion flows were investigated, with particular interest in the asymptotic residual oil saturation. The addition of surfactant to the invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.

    The classification of irreducible admissible mod p representations of a p-adic GL_n

    Full text link
    Let F be a finite extension of Q_p. Using the mod p Satake transform, we define what it means for an irreducible admissible smooth representation of an F-split p-adic reductive group over \bar F_p to be supersingular. We then give the classification of irreducible admissible smooth GL_n(F)-representations over \bar F_p in terms of supersingular representations. As a consequence we deduce that supersingular is the same as supercuspidal. These results generalise the work of Barthel-Livne for n = 2. For general split reductive groups we obtain similar results under stronger hypotheses.Comment: 55 pages, to appear in Inventiones Mathematica

    Shear-Induced Isotropic-to-Lamellar Transition in a Lattice-Gas Model of Ternary Amphiphilic Fluids

    Full text link
    Although shear-induced isotropic-to-lamellar transitions in ternary systems of oil, water and surfactant have been observed experimentally and predicted theoretically by simple models for some time now, their numerical simulation has not been achieved so far. In this work we demonstrate that a recently introduced hydrodynamic lattice-gas model of amphiphilic fluids is well suited for this purpose: the two-dimensional version of this model does indeed exhibit a shear-induced isotropic-to-lamellar phase transition.Comment: 17 pages, LaTeX with epsf and REVTeX, PostScript and EPS illustrations included. To appear in J. Phys. Cond. Ma

    Modular symbols in Iwasawa theory

    Full text link
    This survey paper is focused on a connection between the geometry of GLd\mathrm{GL}_d and the arithmetic of GLd1\mathrm{GL}_{d-1} over global fields, for integers d2d \ge 2. For d=2d = 2 over Q\mathbb{Q}, there is an explicit conjecture of the third author relating the geometry of modular curves and the arithmetic of cyclotomic fields, and it is proven in many instances by the work of the first two authors. The paper is divided into three parts: in the first, we explain the conjecture of the third author and the main result of the first two authors on it. In the second, we explain an analogous conjecture and result for d=2d = 2 over Fq(t)\mathbb{F}_q(t). In the third, we pose questions for general dd over the rationals, imaginary quadratic fields, and global function fields.Comment: 43 page

    Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid

    Full text link
    We investigate the growth kinetics of binary immiscible fluids and emulsions in two dimensions using a hydrodynamic lattice-gas model. We perform off-critical quenches in the binary fluid case and find that the domain size within the minority phase grows algebraically with time in accordance with theoretical predictions. In the late time regime we find a growth exponent n = 0.45 over a wide range of concentrations, in good agreement with other simluations. In the early time regime we find no universal growth exponent but a strong dependence on the concentration of the minority phase. In the ternary amphiphilic fluid case the kinetics of self assembly of the droplet phase are studied for the first time. At low surfactant concentrations, we find that, after an early algebraic growth, a nucleation regime dominates the late-time kinetics, which is enhanced by an increasing concentration of surfactant. With a further increase in the concentration of surfactant, we see a crossover to logarithmically slow growth, and finally saturation of the oil droplets, which we fit phenomenologically to a stretched exponential function. Finally, the transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR

    Risk factors for presentation to hospital with severe anaemia in Tanzanian children: a case-control study.

    Get PDF
    In malaria endemic areas anaemia is a usually silent condition that nevertheless places a considerable burden on health services. Cases of severe anaemia often require hospitalization and blood transfusions. The objective of this study was to assess risk factors for admission with anaemia to facilitate the design of anaemia control programmes. We conducted a prospective case-control study of children aged 2-59 months admitted to a district hospital in southern Tanzania. There were 216 cases of severe anaemia [packed cell volume (PCV) < 25%] and 234 age-matched controls (PCV > or = 25%). Most cases [55.6% (n = 120)] were < 1 year of age. Anaemia was significantly associated with the educational level of parents, type of accommodation, health-seeking behaviour, the child's nutritional status and recent and current medical history. Of these, the single most important factor was Plasmodium falciparum parasitaemia [OR 4.3, 95% confidence interval (CI) 2.9-6.5, P < 0.001]. Multivariate analysis showed that increased recent health expenditure [OR 2.2 (95% CI 1.3-3.9), P = 0.005], malnutrition [OR 2.4 (95%CI 1.3-4.3), P < 0.001], living > 10 km from the hospital [OR 3.0 (95% CI 1.9-4.9), P < 0.001], a history of previous blood transfusion [OR 3.8 (95% CI 1.7-9.1), P < 0.001] and P. falciparum parasitaemia [OR 9.5 (95% CI 4.3-21.3), P < 0.001] were independently related to risk of being admitted with anaemia. These findings are considered in terms of the pathophysiological pathway leading to anaemia. The concentration of anaemia in infants and problems of access to health services and adequate case management underline the need for targeted preventive strategies for anaemia control

    Lattice-gas simulations of Domain Growth, Saturation and Self-Assembly in Immiscible Fluids and Microemulsions

    Full text link
    We investigate the dynamical behavior of both binary fluid and ternary microemulsion systems in two dimensions using a recently introduced hydrodynamic lattice-gas model of microemulsions. We find that the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with experiment and consequently affects the non-equilibrium growth of oil and water domains. As the density of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to a growth that is {\it slow}, and we find that this slow growth can be characterized by a logarithmic time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain point and we find that this final characteristic domain size is inversely proportional to the interfacial surfactant concentration in the system.Comment: 28 pages, latex, embedded .eps figures, one figure is in colour, all in one uuencoded gzip compressed tar file, submitted to Physical Review

    Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids

    Full text link
    We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, incompressible, athermal fluids in three dimensions to simulate the coarsening of domains following a deep quench below the spinodal point from a symmetric and homogeneous mixture into a two-phase configuration. We find the average domain size growing with time as tγt^\gamma, where γ\gamma increases in the range 0.545<γ<0.7170.545 < \gamma < 0.717, consistent with a crossover between diffusive t1/3t^{1/3} and hydrodynamic viscous, t1.0t^{1.0}, behaviour. We find good collapse onto a single scaling function, yet the domain growth exponents differ from others' works' for similar values of the unique characteristic length and time that can be constructed out of the fluid's parameters. This rebuts claims of universality for the dynamical scaling hypothesis. At early times, we also find a crossover from q2q^2 to q4q^4 in the scaled structure function, which disappears when the dynamical scaling reasonably improves at later times. This excludes noise as the cause for a q2q^2 behaviour, as proposed by others. We also observe exponential temporal growth of the structure function during the initial stages of the dynamics and for wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review
    corecore