2,265 research outputs found

    Effective Average Action of Chern-Simons Field Theory

    Full text link
    The renormalization of the Chern-Simons parameter is investigated by using an exact and manifestly gauge invariant evolution equation for the scale-dependent effective average action.Comment: 14 pages, late

    Equilibration between edge states in the fractional quantum Hall effect regime at high imbalances

    Full text link
    We experimentally study equilibration between edge states, co-propagating at the edge of the fractional quantum Hall liquid, at high initial imbalances. We find an anomalous increase of the conductance between the fractional edge states at the filling factor ν=2/5\nu=2/5 in comparison with the expected one for the model of independent edge states. We conclude that the model of independent fractional edge states is not suitable to describe the experimental situation at ν=2/5\nu=2/5.Comment: 4 page

    Evidence for the Luttigger liquid density of states in transport across the incompressible stripe at fractional filling factors

    Full text link
    We experimentally investigate transport across the incompressible stripe at the sample edge in the fractional quantum Hall effect regime at bulk filling factors ν=2/3\nu=2/3 and ν=2/5\nu=2/5. We obtain the dependence of the equilibration length, that is a phenomenological characteristics of the transport, on the voltage imbalance and the temperature, at high voltage imbalances. These dependencies are found to be of the power-law form, which is a strong evidence for the Luttigger liquid density of states.Comment: 4 pages, to appear in EP

    Renormalization group improved gravitational actions: a Brans-Dicke approach

    Full text link
    A new framework for exploiting information about the renormalization group (RG) behavior of gravity in a dynamical context is discussed. The Einstein-Hilbert action is RG-improved by replacing Newton's constant and the cosmological constant by scalar functions in the corresponding Lagrangian density. The position dependence of GG and Λ\Lambda is governed by a RG equation together with an appropriate identification of RG scales with points in spacetime. The dynamics of the fields GG and Λ\Lambda does not admit a Lagrangian description in general. Within the Lagrangian formalism for the gravitational field they have the status of externally prescribed ``background'' fields. The metric satisfies an effective Einstein equation similar to that of Brans-Dicke theory. Its consistency imposes severe constraints on allowed backgrounds. In the new RG-framework, GG and Λ\Lambda carry energy and momentum. It is tested in the setting of homogeneous-isotropic cosmology and is compared to alternative approaches where the fields GG and Λ\Lambda do not carry gravitating 4-momentum. The fixed point regime of the underlying RG flow is studied in detail.Comment: LaTeX, 72 pages, no figure

    Optical measurements of spin noise as a high resolution spectroscopic tool

    Full text link
    The intrinsic fluctuations of electron spins in semiconductors and atomic vapors generate a small, randomly-varying "spin noise" that can be detected by sensitive optical methods such as Faraday rotation. Recent studies have demonstrated that the frequency, linewidth, and lineshape of this spin noise directly reveals dynamical spin properties such as dephasing times, relaxation mechanisms and g-factors without perturbing the spins away from equilibrium. Here we demonstrate that spin noise measurements using wavelength-tunable probe light forms the basis of a powerful and novel spectroscopic tool to provide unique information that is fundamentally inaccessible via conventional linear optics. In particular, the wavelength dependence of the detected spin noise power can reveal homogeneous linewidths buried within inhomogeneously-broadened optical spectra, and can resolve overlapping optical transitions belonging to different spin systems. These new possibilities are explored both theoretically and via experiments on spin systems in opposite limits of inhomogeneous broadening (alkali atom vapors and semiconductor quantum dots).Comment: 4 pages, 4 figure

    Tailored quantum dots for entangled photon pair creation

    Full text link
    We compare the asymmetry-induced exchange splitting delta_1 of the bright-exciton ground-state doublet in self-assembled (In,Ga)As/GaAs quantum dots, determined by Faraday rotation, with its homogeneous linewidth gamma, obtained from the radiative decay in time-resolved photoluminescence. Post-growth thermal annealing of the dot structures leads to a considerable increase of the homogeneous linewidth, while a strong reduction of the exchange splitting is simultaneously observed. The annealing can be tailored such that delta_1 and gamma become comparable, whereupon the carriers are still well confined. This opens the possibility to observe polarization entangled photon pairs through the biexciton decay cascade.Comment: 4 pages, 4 figure

    Spin dynamics of electrons and holes in InGaAs/GaAs quantum wells at milliKelvin temperatures

    Full text link
    The carrier spin dynamics in a n-doped (In,Ga)As/GaAs quantum well has been studied by time-resolved Faraday rotation and ellipticity techniques in the temperature range down to 430 milliKelvin. These techniques give data with very different spectral dependencies, from which nonetheless consistent information on the spin dynamics can be obtained, in agreement with theoretical predictions. The mechanisms of long-lived spin coherence generation are discussed for the cases of trion and exciton resonant excitation. We demonstrate that carrier localization leads to a saturation of spin relaxation times at 45 ns for electrons below 4.5 K and at 2 ns for holes below 2.3 K. The underlying spin relaxation mechanisms are discussed.Comment: 8 pages, 8 figure
    • …
    corecore