12,047,281 research outputs found
Популяция дуба красного в Беловежской пуще
Впервые с использованием материалов лесоустройства установлены лесоводственно-таксационные параметры популяции интродуцированного в Беловежскую пущу древесного вида – дуба красного (Quercus rubra L.). Общая площадь искусственных и естественных насаждений с различной долей его участия составляет в Национальном парке 221,2 га. Показано, в частности, что популяция исследуемого вида обладает способностью к территориальной экспансии, причем в относительно более бедные условия местопроизрастания, нежели типичные для его аборигенного аналога – дуба черешчатого
The nature of 50 Palermo Swift -BAT hard X-ray objects through optical spectroscopy
open19openRojas, A. F.; Masetti, N.; Minniti, D.; Jimã©nez-bailã³n, E.; Chavushyan, V.; Hau, G.; Mcbride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, Lorenzo; Palazzi, E.; Patiã±o-ãlvarez, V.; Stephen, J. B.; Ubertini, P.Rojas, A. F.; Masetti, N.; Minniti, D.; Jimã©nez-bailã³n, E.; Chavushyan, V.; Hau, G.; Mcbride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiã±o-ã lvarez, V.; Stephen, J. B.; Ubertini, P
Exact Localisations of Feedback Sets
The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform
a given multi digraph into an acyclic graph by deleting as few arcs
(vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one
of the classic NP-complete problems. An important contribution of this paper is
that the subgraphs , of all elementary
cycles or simple cycles running through some arc , can be computed in
and , respectively. We use
this fact and introduce the notion of the essential minor and isolated cycles,
which yield a priori problem size reductions and in the special case of so
called resolvable graphs an exact solution in . We show
that weighted versions of the FASP and FVSP possess a Bellman decomposition,
which yields exact solutions using a dynamic programming technique in times
and
, where , , respectively. The parameters can
be computed in , ,
respectively and denote the maximal dimension of the cycle space of all
appearing meta graphs, decoding the intersection behavior of the cycles.
Consequently, equal zero if all meta graphs are trees. Moreover, we
deliver several heuristics and discuss how to control their variation from the
optimum. Summarizing, the presented results allow us to suggest a strategy for
an implementation of a fast and accurate FASP/FVSP-SOLVER
Monotonicity of average return probabilities for random walks in random environments
We extend a result of Lyons (2016) from fractional tiling of finite graphs to
a version for infinite random graphs. The most general result is as follows.
Let be a unimodular probability measure on rooted networks
with positive weights on its edges and with a percolation subgraph of
with positive weights on its edges. Let denote the
conditional law of given . Assume that is a constant -a.s. We show that if
-a.s. whenever is adjacent to , then Comment: 9 pp., 4 figure
A Dynamic Programming Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry
The tandem mass spectrometry fragments a large number of molecules of the
same peptide sequence into charged prefix and suffix subsequences, and then
measures mass/charge ratios of these ions. The de novo peptide sequencing
problem is to reconstruct the peptide sequence from a given tandem mass
spectral data of k ions. By implicitly transforming the spectral data into an
NC-spectrum graph G=(V,E) where |V|=2k+2, we can solve this problem in
O(|V|+|E|) time and O(|V|) space using dynamic programming. Our approach can be
further used to discover a modified amino acid in O(|V||E|) time and to analyze
data with other types of noise in O(|V||E|) time. Our algorithms have been
implemented and tested on actual experimental data.Comment: A preliminary version appeared in Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 389--398, 200
- …