12,047,281 research outputs found

    Популяция дуба красного в Беловежской пуще

    Get PDF
    Впервые с использованием материалов лесоустройства установлены лесоводственно-таксационные параметры популяции интродуцированного в Беловежскую пущу древесного вида – дуба красного (Quercus rubra L.). Общая площадь искусственных и естественных насаждений с различной долей его участия составляет в Национальном парке 221,2 га. Показано, в частности, что популяция исследуемого вида обладает способностью к территориальной экспансии, причем в относительно более бедные условия местопроизрастания, нежели типичные для его аборигенного аналога – дуба черешчатого

    The nature of 50 Palermo Swift -BAT hard X-ray objects through optical spectroscopy

    Get PDF
    open19openRojas, A. F.; Masetti, N.; Minniti, D.; Jimã©nez-bailã³n, E.; Chavushyan, V.; Hau, G.; Mcbride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, Lorenzo; Palazzi, E.; Patiã±o-ãlvarez, V.; Stephen, J. B.; Ubertini, P.Rojas, A. F.; Masetti, N.; Minniti, D.; Jimã©nez-bailã³n, E.; Chavushyan, V.; Hau, G.; Mcbride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiã±o-ã lvarez, V.; Stephen, J. B.; Ubertini, P

    Exact Localisations of Feedback Sets

    Full text link
    The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform a given multi digraph G=(V,E)G=(V,E) into an acyclic graph by deleting as few arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of the classic NP-complete problems. An important contribution of this paper is that the subgraphs Gel(e)G_{\mathrm{el}}(e), Gsi(e)G_{\mathrm{si}}(e) of all elementary cycles or simple cycles running through some arc eEe \in E, can be computed in O(E2)\mathcal{O}\big(|E|^2\big) and O(E4)\mathcal{O}(|E|^4), respectively. We use this fact and introduce the notion of the essential minor and isolated cycles, which yield a priori problem size reductions and in the special case of so called resolvable graphs an exact solution in O(VE3)\mathcal{O}(|V||E|^3). We show that weighted versions of the FASP and FVSP possess a Bellman decomposition, which yields exact solutions using a dynamic programming technique in times O(2mE4log(V))\mathcal{O}\big(2^{m}|E|^4\log(|V|)\big) and O(2nΔ(G)4V4log(E))\mathcal{O}\big(2^{n}\Delta(G)^4|V|^4\log(|E|)\big), where mEV+1m \leq |E|-|V| +1, n(Δ(G)1)VE+1n \leq (\Delta(G)-1)|V|-|E| +1, respectively. The parameters m,nm,n can be computed in O(E3)\mathcal{O}(|E|^3), O(Δ(G)3V3)\mathcal{O}(\Delta(G)^3|V|^3), respectively and denote the maximal dimension of the cycle space of all appearing meta graphs, decoding the intersection behavior of the cycles. Consequently, m,nm,n equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and discuss how to control their variation from the optimum. Summarizing, the presented results allow us to suggest a strategy for an implementation of a fast and accurate FASP/FVSP-SOLVER

    Monotonicity of average return probabilities for random walks in random environments

    Full text link
    We extend a result of Lyons (2016) from fractional tiling of finite graphs to a version for infinite random graphs. The most general result is as follows. Let P\bf P be a unimodular probability measure on rooted networks (G,o)(G, o) with positive weights wGw_G on its edges and with a percolation subgraph HH of GG with positive weights wHw_H on its edges. Let P(G,o){\bf P}_{(G, o)} denote the conditional law of HH given (G,o)(G, o). Assume that α:=P(G,o)[oV(H)]>0\alpha := {\bf P}_{(G, o)}\bigl[{o \in V(H)}\bigr] > 0 is a constant P\bf P-a.s. We show that if P\bf P-a.s. whenever eE(G)e \in E(G) is adjacent to oo, E(G,o)[wH(e)eE(H)]P(G,o)[eE(H)oV(H)]wG(e), {\bf E}_{(G, o)}\bigl[{w_H(e) \bigm| e \in E(H)}\bigr] {\bf P}_{(G, o)}\bigl[{e \in E(H) \bigm| o\in V(H)}\bigr] \le w_G(e) \,, then t>0E[pt(o;G)]E[pt(o;H)oV(H)]. \forall t > 0 \quad {\bf E}\bigl[{p_t(o; G)}\bigr] \le {\bf E}\bigl[{p_t(o; H) \bigm| o \in V(H)}\bigr] \,. Comment: 9 pp., 4 figure

    A Dynamic Programming Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry

    Full text link
    The tandem mass spectrometry fragments a large number of molecules of the same peptide sequence into charged prefix and suffix subsequences, and then measures mass/charge ratios of these ions. The de novo peptide sequencing problem is to reconstruct the peptide sequence from a given tandem mass spectral data of k ions. By implicitly transforming the spectral data into an NC-spectrum graph G=(V,E) where |V|=2k+2, we can solve this problem in O(|V|+|E|) time and O(|V|) space using dynamic programming. Our approach can be further used to discover a modified amino acid in O(|V||E|) time and to analyze data with other types of noise in O(|V||E|) time. Our algorithms have been implemented and tested on actual experimental data.Comment: A preliminary version appeared in Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 389--398, 200
    corecore