6,065 research outputs found

    Yukawa Scalar Self-Mass on a Conformally Flat Background

    Full text link
    We compute the one loop self-mass-squared of a massless, minimally coupled scalar which is Yukawa-coupled to a massless Dirac fermion in a general conformally flat background. Dimensional regularization is employed and a fully renormalized result is obtained. For the special case of a locally de Sitter background our result is manifestly de Sitter invariant. By solving the effective field equations we show that the scalar mode functions acquire no significant one loop corrections. In particular, the phenomenon of super-adiabatic amplification is not affected. One consequence is that the scalar-catalyzed production of fermions during inflation should not be reduced by changes in the scalar sector before it has time to go to completion.Comment: 23 pages, LaTeX 2epsilon, 3 figures (uses axodraw

    Excitation quenching in chlorophyll-carotenoid antenna systems: 'coherent' or 'incoherent'

    Get PDF
    Plants possess an essential ability to rapidly down-regulate light-harvesting in response to high light. This photoprotective process involves the formation of energy-quenching interactions between the chlorophyll and carotenoid pigments within the antenna of Photosystem II (PSII). The nature of these interactions is currently debated, with, among others, ‘incoherent’ or ‘coherent’ quenching models (or a combination of the two) suggested by a range of time-resolved spectroscopic measurements. In ‘incoherent quenching’, energy is transferred from a chlorophyll to a carotenoid and is dissipated due to the intrinsically short excitation lifetime of the latter. ‘Coherent quenching’ would arise from the quantum mechanical mixing of chlorophyll and carotenoid excited state properties, leading to a reduction in chlorophyll excitation lifetime. The key parameters are the energy gap, Δ=Car−Chl, Δ ε = ε C a r − ε C h l , and the resonance coupling, J, between the two excited states. Coherent quenching will be the dominant process when −<Δ<, − J < Δ ε < J , i.e., when the two molecules are resonant, while the quenching will be largely incoherent when Chl>(Car+). ε C h l > ( ε C a r + J ) . One would expect quenching to be energetically unfavorable for Chl<(Car−). ε C h l < ( ε C a r − J ) . The actual dynamics of quenching lie somewhere between these limiting regimes and have non-trivial dependencies of both J and Δ. Δ ε . Using the Hierarchical Equation of Motion (HEOM) formalism we present a detailed theoretical examination of these excitation dynamics and their dependence on slow variations in J and Δ. Δ ε . We first consider an isolated chlorophyll–carotenoid dimer before embedding it within a PSII antenna sub-unit (LHCII). We show that neither energy transfer, nor the mixing of excited state lifetimes represent unique or necessary pathways for quenching and in fact discussing them as distinct quenching mechanisms is misleading. However, we do show that quenching cannot be switched ‘on’ and ‘off’ by fine tuning of Δ Δ ε around the resonance point, Δ=0. Δ ε = 0. Due to the large reorganization energy of the carotenoid excited state, we find that the presence (or absence) of coherent interactions have almost no impact of the dynamics of quenching. Counter-intuitively significant quenching is present even when the carotenoid excited state lies above that of the chlorophyll. We also show that, above a rather small threshold value of >10cm−1 J > 10 c m − 1 quenching becomes less and less sensitive to J (since in the window −<Δ< − J < Δ ε < J the overall lifetime is independent of it). The requirement for quenching appear to be only that >0. J > 0. Although the coherent/incoherent character of the quenching can vary, the overall kinetics are likely robust with respect to fluctuations in J and Δ. Δ ε . This may be the basis for previous observations of NPQ with both coherent and incoherent features

    Improving the Functional Control of Aged Ferroelectrics using Insights from Atomistic Modelling

    Get PDF
    We provide a fundamental insight into the microscopic mechanisms of the ageing processes. Using large scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO3, we demonstrate that the experimentally observed ageing phenomena can be reproduced from intrinsic interactions of defect-dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.Comment: 6 pages, 3 figure

    Ka-band MMIC beam steered transmitter array

    Get PDF
    A 32-GHz six-element linear transmitter array utilizing monolithic microwave integrated circuit (MMIC) phase shifters and power amplifiers was designed and tested as part of the development of a spacecraft array feed for NASA deep-space communications applications. Measurements of the performance of individual phase shifters, power amplifiers, and microstrip radiators were carried out, and electronic beam steering of the linear array was demonstrated. The switched-line phase shifters were accurate to within 7 percent on average and the power amplifier 1-dB compressed output power varied over 0.3 dB. The array had a beamwidth of 7.5 deg and demonstrated acceptable beam steering over + or - 8 deg. From the results, it can be concluded that this MMIC phased array has adequate beam-scanning capability for use in the two-dimensional array. The areas that need to be improved are the efficiency of the MMIC power amplifier and the insertion loss of the MMIC phase shifter

    District Meetings

    Get PDF

    Graviton emission from a higher-dimensional black hole

    Full text link
    We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M)1/(n−1)ω∼1(2M)^{1/(n-1)}\omega\sim 1, where MM is the mass of the black hole and ω\omega is the energy of the emitted gravitons in (2+n)(2+n)-dimensions. To find easily tractable solutions we work in the limit l≫1l \gg 1, where ll is the angular momentum quantum number of the graviton.Comment: 10 pages, 8 figures, references added, typos corrected. Graviton degeneracy factor included; main results remain unchange

    Self-energy corrections in an antiferromagnet -- interplay of classical and quantum effects on quasiparticle dispersion

    Full text link
    Self-energy corrections due to fermion-magnon interaction are studied in the antiferromagnetic state of the t−t′−t′′t-t'-t'' Hubbard model within the rainbow (noncrossing) approximation in the full UU range from weak to strong coupling. The role of classical (mean-field) features of fermion and magnon dispersion, associated with finite U,t′,t′′U,t',t'', are examined on quantum corrections to quasiparticle energy, weight, one-particle density of states etc. A finite-UU induced classical dispersion term, absent in the t−Jt-J model, is found to play an important role in suppressing the quasiparticle weight for states near k=(0,0){\bf k}=(0,0), as seen in cuprates. For intermediate UU, the renormalized AF band gap is found to be nearly half of the classical value, and the weak coupling limit is quite non-trivial due to strongly suppressed magnon amplitude. For finite t′t', the renormalized AF band gap is shown to vanish at a critical interaction strength UcU_c, yielding a spin fluctuation driven first-order AF insulator - PM metal transition. Quasiparticle dispersion evaluated with the same set of Hubbard model cuprate parameters, as obtained from a recent magnon spectrum fit, provides excellent agreement with ARPES data for Sr2CuO2Cl2\rm Sr_2 Cu O_2 Cl_2 .Comment: 11 pages, 17 figure

    The Real Scalar Field Equation for Nariai Black Hole in the 5D Schwarzschild-de Sitter Black String Space

    Full text link
    The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild-de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients (R,TR, T) are obtained. At last, we also compare the coefficients with usual 4D counterpart.Comment: 10 pages,6 figures.To appear in Int. J. Mod. Phys.
    • …
    corecore