22 research outputs found

    Phase transitions in systems of self-propelled agents and related network models

    Full text link
    An important characteristic of flocks of birds, school of fish, and many similar assemblies of self-propelled particles is the emergence of states of collective order in which the particles move in the same direction. When noise is added into the system, the onset of such collective order occurs through a dynamical phase transition controlled by the noise intensity. While originally thought to be continuous, the phase transition has been claimed to be discontinuous on the basis of recently reported numerical evidence. We address this issue by analyzing two representative network models closely related to systems of self-propelled particles. We present analytical as well as numerical results showing that the nature of the phase transition depends crucially on the way in which noise is introduced into the system.Comment: Four pages, four figures. Submitted to PR

    Parametric instability of linear oscillators with colored time-dependent noise

    Full text link
    The goal of this paper is to discuss the link between the quantum phenomenon of Anderson localization on the one hand, and the parametric instability of classical linear oscillators with stochastic frequency on the other. We show that these two problems are closely related to each other. On the base of analytical and numerical results we predict under which conditions colored parametric noise suppresses the instability of linear oscillators.Comment: RevTex, 9 pages, no figure

    Cohesive motion in one-dimensional flocking

    Full text link
    A one-dimensional rule-based model for flocking, that combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to a unique group behaviour that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed.Comment: 24 pages, 11 figure

    Emergence of coherent motion in aggregates of motile coupled maps

    Full text link
    In this paper we study the emergence of coherence in collective motion described by a system of interacting motiles endowed with an inner, adaptative, steering mechanism. By means of a nonlinear parametric coupling, the system elements are able to swing along the route to chaos. Thereby, each motile can display different types of behavior, i.e. from ordered to fully erratic motion, accordingly with its surrounding conditions. The appearance of patterns of collective motion is shown to be related to the emergence of interparticle synchronization and the degree of coherence of motion is quantified by means of a graph representation. The effects related to the density of particles and to interparticle distances are explored. It is shown that the higher degrees of coherence and group cohesion are attained when the system elements display a combination of ordered and chaotic behaviors, which emerges from a collective self-organization process.Comment: 33 pages, 12 figures, accepted for publication at Chaos, Solitons and Fractal

    Behavioral effects in room evacuation models

    No full text
    In this work we study a model for the evacuation of pedestrians from an enclosure considering a continuous space substrate and discrete time. We analyze the influence of behavioral features that affect the use of the empty space, that can be linked to the attitudes or characters of the pedestrians. We study how the interaction of different behavioral profiles affects the needed time to evacuate completely a room and the occurrence of clogging. We find that neither fully egotistic nor fully cooperative attitudes are optimal from the point of view of the crowd. In contrast, intermediate behaviors provide lower evacuation times. This leads us to identify some phenomena closely analogous to the faster-is-slower effect. The proposed model allows for distinguishing between the role of the attitudes in the search for empty space and the attitudes in the conflicts.Fil: Dossetti, V.. Benem茅rita Universidad Aut贸noma de Puebla; M茅xico. University of New Mexico; Estados UnidosFil: Bouzat, Sebastian. Comisi贸n Nacional de Energ铆a At贸mica. Gerencia del Area de Investigaci贸n y Aplicaciones No Nucleares. Gerencia de F铆sica (Centro At贸mico Bariloche); Argentina. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Conicet - Patagonia Norte; ArgentinaFil: Kuperman, Marcelo Nestor. Comisi贸n Nacional de Energ铆a At贸mica. Gerencia del Area de Investigaci贸n y Aplicaciones No Nucleares. Gerencia de F铆sica (Centro At贸mico Bariloche); Argentina. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Conicet - Patagonia Norte; Argentin
    corecore