9,083 research outputs found
Frustration induced disordered magnetism in Ba3RuTi2O9
The title compound Ba3RuTi2O9 crystallizes with a hexagonal unit cell. It
contains layers of edge shared triangular network of Ru4+ (S=1) ions. Magnetic
susceptibility chi(T) and heat capacity data show no long range magnetic
ordering down to 1.8K. A Curie-Weiss (CW) fitting of chi(T) yields a large
antiferromagnetic CW temperature theta_CW=-166K. However, in low field, a
splitting of zero field cooled (ZFC) and field cooled (FC) chi(T) is observed
below ~30K. Our measurements suggest that Ba3RuTi2O9 is a highly frustrated
system but only a small fraction of the spins in this system undergo a
transition to a frozen magnetic state below ~30K.Comment: 5 pages, 6 figures (accepted in EPJB
Thrice weekly nocturnal in-centre haemodiafiltration: a 2-year experience
Background: Adequate control of plasma phosphate without phosphate binders is difficult to achieve on a thrice-weekly haemodialysis schedule. The use of quotidian nocturnal dialysis is effective but not practical in the in-centre setting. This quality improvement project was set up as an exercise allowing the evaluation of small-solute clearance by combining convection with extended-hour dialysis in a thrice-weekly hospital setting. Methods: A single-centred, prospective analysis of patients' electronic records was performed from August 2012 to July 2014. The duration of haemodiafiltration was increased from a median of 4.5 to 8 h. Dialysis adequacy, biochemical parameters and medications were reviewed on a monthly basis. A reduction in plasma phosphate was anticipated, so all phosphate binders were stopped. Results: Since inception, 14 patients have participated with over 2,000 sessions of dialysis. The pre-dialysis phosphate level fell from a mean of 1.52 ± 0.4 to 1.06 ± 0.1 mmol/l (p < 0.05). The average binder intake of 3.26 ± 2.6 tablets was eliminated. A normal plasma phosphate range has been maintained with increased dietary phosphate intake and no requirement for intradialytic phosphate supplementation. Conclusion: Phosphate control can be achieved without the need for binders or supplementation on a thrice-weekly in-centre haemodiafiltration program
Standard noncommuting and commuting dilations of commuting tuples
We introduce a notion called `maximal commuting piece' for tuples of Hilbert
space operators. Given a commuting tuple of operators forming a row contraction
there are two commonly used dilations in multivariable operator theory. Firstly
there is the minimal isometric dilation consisting of isometries with
orthogonal ranges and hence it is a noncommuting tuple. There is also a
commuting dilation related with a standard commuting tuple on Boson Fock space.
We show that this commuting dilation is the maximal commuting piece of the
minimal isometric dilation. We use this result to classify all representations
of Cuntz algebra O_n coming from dilations of commuting tuples.Comment: 18 pages, Latex, 1 commuting diagra
Geometric Prequantization of the Moduli Space of the Vortex equations on a Riemann surface
The moduli space of solutions to the vortex equations on a Riemann surface
are well known to have a symplectic (in fact K\"{a}hler) structure. We show
this symplectic structure explictly and proceed to show a family of symplectic
(in fact, K\"{a}hler) structures on the moduli space,
parametrised by , a section of a line bundle on the Riemann surface.
Next we show that corresponding to these there is a family of prequantum line
bundles on the moduli space whose curvature is
proportional to the symplectic forms .Comment: 8 page
Pulse-splitting in light propagation through -type atomic media due to an interplay of Kerr-nonlinearity and group velocity dispersion
We investigate the spatio-temporal evolution of a Gaussian probe pulse
propagating through a four-level -type atomic medium. At two-photon
resonance of probe-and control fields, weaker probe pulses may propagate
through the medium with low absorption and pulse shape distortion. In contrast,
we find that increasing the probe pulse intensity leads to a splitting of the
initially Gaussian pulse into a sequence of subpulses in the time domain. The
number of subpulses arising throughout the propagation can be controlled via a
suitable choice of the probe and control field parameters. Employing a simple
theoretical model for the nonlinear pulse propagation, we conclude that the
splitting occurs due to an interplay of Kerr nonlinearity and group velocity
dispersion.Comment: 9 pages, 7 figure
75As NMR local probe study of magnetism in (Eu1-xKx)Fe2As2
75As NMR measurements were performed as a function of temperature and doping
in (Eu1-xKx)Fe2As2 (x=0,0.38,0.5,0.7) samples. The large Eu2+ moments and their
fluctuations are found to dominate the 75As NMR properties. The 75As nuclei
close to the Eu2+ moments likely have a very short spin-spin relaxation time
(T2) and are wiped out of our measurement window. The 75As nuclei relatively
far from Eu2+ moments are probed in this study. Increasing the Eu content
progressively decreases the signal intensity with no signal found for the
full-Eu sample (x=0). The large 75As NMR linewidth arises from an inhomogeneous
magnetic environment around them. The spin lattice relaxation rate (1/T1) for
x=0.5 and 0.7 samples is nearly independent of temperature above 100K and
results from a coupling to paramagnetic fluctuations of the Eu2+ moments. The
behavior of 1/T1 at lower temperatures has contributions from the
antiferromagnetic fluctuations of the Eu2+ moments as also the fluctuations
intrinsic to the FeAs planes and from superconductivity.Comment: 6 pages, 6 figures (to appear in EPJB
- …