555 research outputs found

    Black Ring Deconstruction

    Full text link
    We present a sample microstate for a black ring in four and five dimensional language. The microstate consists of a black string microstate with an additional D6-brane. We show that with an appropriate choice of parameters the piece involving the black string microstate falls down a long AdS throat, whose M-theory lift is AdS_3 X S^2. We wrap a spinning dipole M2-brane on the S^2 in the probe approximation. In IIA, this corresponds to a dielectric D2-brane carrying only D0-charge. We conjecture this is the first approximation to a cloud of D0-branes blowing up due to their non-abelian degrees of freedom and the Myers effect.Comment: 10 pages, 2 figure

    The F-Landscape: Dynamically Determining the Multiverse

    Full text link
    We evolve our Multiverse Blueprints to characterize our local neighborhood of the String Landscape and the Multiverse of plausible string, M- and F-theory vacua. Building upon the tripodal foundations of i) the Flipped SU(5) Grand Unified Theory (GUT), ii) extra TeV-Scale vector-like multiplets derived out of F-theory, and iii) the dynamics of No-Scale Supergravity, together dubbed No-Scale F-SU(5), we demonstrate the existence of a continuous family of solutions which might adeptly describe the dynamics of distinctive universes. This Multiverse landscape of F-SU(5) solutions, which we shall refer to as the F-Landscape, accommodates a subset of universes compatible with the presently known experimental uncertainties of our own universe. We show that by secondarily minimizing the minimum of the scalar Higgs potential of each solution within the F-Landscape, a continuous hypervolume of distinct minimum minimorum can be engineered which comprise a regional dominion of universes, with our own universe cast as the bellwether. We conjecture that an experimental signal at the LHC of the No-Scale F-SU(5) framework's applicability to our own universe might sensibly be extrapolated as corroborating evidence for the role of string, M- and F-theory as a master theory of the Multiverse, with No-Scale supergravity as a crucial and pervasive reinforcing structure.Comment: 15 Pages, 7 Figures, 1 Tabl

    Scanning the Landscape of Flux Compactifications: Vacuum Structure and Soft Supersymmetry Breaking

    Full text link
    We scan the landscape of flux compactifications for the Calabi-Yau manifold P[1,1,1,6,9]4\mathbb{P}^4_{[1,1,1,6,9]} with two K\" ahler moduli by varying the value of the flux superpotential W0W_0 over a large range of values. We do not include uplift terms. We find a rich phase structure of AdS and dS vacua. Starting with W0∌1W_0\sim 1 we reproduce the exponentially large volume scenario, but as W0W_0 is reduced new classes of minima appear. One of them corresponds to the supersymmetric KKLT vacuum while the other is a new, deeper non-supersymmetric minimum. We study how the bare cosmological constant and the soft supersymmetry breaking parameters for matter on D7 branes depend on W0W_0, for these classes of minima. We discuss potential applications of our results.Comment: draft format remove

    Two Centered Black Holes and N=4 Dyon Spectrum

    Get PDF
    The exact spectrum of dyons in a class of N=4 supersymmetric string theories is known to change discontinuously across walls of marginal stability. We show that the change in the degeneracy across the walls of marginal stability can be accounted for precisely by the entropy of two centered small black holes which disappear as we cross the walls of marginal stability.Comment: LaTeX file, 12 pages; v3: added footnote 2 regarding overall sign of the index, expanded footnote 3, added reference

    Type IIB Flux Vacua from M-theory via F-theory

    Full text link
    We study in detail some aspects of duality between type IIB and M-theory. We focus on the duality between type IIB string theory on K3 x T^2/Z_2 orientifold and M-theory on K3 x K3, in the F-theory limit. We give the explicit map between the fields and in particular between the moduli of compactification, studying their behavior under the F-theory limit. Turning on fluxes generates a potential for the moduli both in type IIB and in M-theory. We verify that the type IIB analysis gives the same results of the F-theory analysis. In particular, we check that the two potentials match.Comment: 24 pages; reference correcte

    Unifying gauge couplings at the string scale

    Get PDF
    Using the current precision electroweak data, we look for the minimal particle content which is necessary to add to the standard model in order to have a complete unification of gauge couplings and gravity at the weakly coupled heterotic string scale. We find that the addition of a vector-like fermion at an intermediate scale and a non-standard hypercharge normalization are in general sufficient to achieve this goal at two-loop level. Requiring the extra matter scale to be below the TeV scale, it is found that the addition of three vector-like fermion doublets with a mass around 700 GeV yields a perfect string-scale unification, provided that the affine levels are (kY,k2,k3)=(13/3,1,2)(k_Y, k_2 ,k_3)=(13/3, 1, 2) , as in the SU(5)×SU(5)SU(5) \times SU(5) string-GUT. Furthermore, if supersymmetry is broken at the unification scale, the Higgs mass is predicted in the range 125 GeV - 170 GeV, depending on the precise values of the top quark mass and tan⁥ÎČ\tan \beta parameter.Comment: 11 pages, 4 eps figures, using jpconf style, talk given at CORFU2005, RTN meeting ``The Quest for Unification: Theory Confronts Experiment'', 11 - 18 September 2005, Corfu, Greec

    Kahler Stabilized, Modular Invariant Heterotic String Models

    Full text link
    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binetruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.Comment: Invited review article for International Journal of Modern Physic

    Black Holes in Supergravity: the non-BPS Branch

    Get PDF
    We construct extremal, spherically symmetric black hole solutions to 4D supergravity with charge assignments that preclude BPS-saturation. In particular, we determine the ground state energy as a function of charges and moduli. We find that the mass of the non-BPS black hole remains that of a marginal bound state of four basic constituents throughout the entire moduli space and that there is always a non-zero gap above the BPS bound.Comment: 29 pages, one appendix, no figures; v2. few comments and references added and a missing sign included; v3. further references adde

    Gaugino Condensation and Nonperturbative Superpotentials in Flux Compactifications

    Get PDF
    There are two known sources of nonperturbative superpotentials for K\"ahler moduli in type IIB orientifolds, or F-theory compactifications on Calabi-Yau fourfolds, with flux: Euclidean brane instantons and low-energy dynamics in D7 brane gauge theories. The first class of effects, Euclidean D3 branes which lift in M-theory to M5 branes wrapping divisors of arithmetic genus 1 in the fourfold, is relatively well understood. The second class has been less explored. In this paper, we consider the explicit example of F-theory on K3×K3K3 \times K3 with flux. The fluxes lift the D7 brane matter fields, and stabilize stacks of D7 branes at loci of enhanced gauge symmetry. The resulting theories exhibit gaugino condensation, and generate a nonperturbative superpotential for K\"ahler moduli. We describe how the relevant geometries in general contain cycles of arithmetic genus χ≄1\chi \geq 1 (and how χ>1\chi > 1 divisors can contribute to the superpotential, in the presence of flux). This second class of effects is likely to be important in finding even larger classes of models where the KKLT mechanism of moduli stabilization can be realized. We also address various claims about the situation for IIB models with a single K\"ahler modulus.Comment: 24 pages, harvmac, no figures, references adde

    Enhanced Symmetries in Multiparameter Flux Vacua

    Full text link
    We give a construction of type IIB flux vacua with discrete R-symmetries and vanishing superpotential for hypersurfaces in weighted projective space with any number of moduli. We find that the existence of such vacua for a given space depends on properties of the modular group, and for Fermat models can be determined solely by the weights of the projective space. The periods of the geometry do not in general have arithmetic properties, but live in a vector space whose properties are vital to the construction.Comment: 32 pages, LaTeX. v2: references adde
    • 

    corecore