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Abstract

The exact spectrum of dyons in a class of N=4 supersymmetric string theories is known
to change discontinuously across walls of marginal stability. We show that the change in the
degeneracy across the walls of marginal stability can be accounted for precisely by the entropy
of two centered small black holes which (dis)appear as we cross the walls of marginal stability.
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1 Introduction

We now have a good understanding of the exact spectrum of a class of quarter BPS dyons

in N = 4 supersymmetric string theories, obtained by taking an asymmetric ZZN orbifold of

heterotic or type IIA string theory compactified on T 6 [1–13]. It is also known that as we cross

various walls of marginal stability associated with the possible decay of the dyon into a pair of

half BPS states, the degeneracy changes by a certain amount that is exactly computable [11].

On the other hand the asymptotic expansion of the degeneracy formula for large charges

reproduces the entropy of the corresponding black hole not only to the leading order, but also

to the first subleading order in an expansion in inverse power of the charges [4,7–9,14]. Given

this correspondence between dyon spectrum and black hole entropy, a natural question to ask

would be: can we understand the jump in the degeneracy across walls of marginal stability on

the black hole side?

The question is somewhat tricky since these jumps in the degeneracy are exponentially

small compared to the leading contribution to the entropy [11]. Nevertheless since the change

is discontinuous, one might hope that there is a clear mechanism on the black hole side which

produces these discontinuous changes across the walls of marginal stability and if we can

identify this mechanism then we may be able to reproduce these jumps on the black hole side.

In this paper we shall show that there is indeed a clear mechanism on the black hole side that

describes these jumps, – this is the phenomenon of (dis)appearance of multicentered black hole

solutions for a given total charge as we cross various walls of marginal stability in the space

of asymptotic values of the moduli fields [15–19]. In particular the exponential of the entropy

associated with these multi-centered black holes will reproduce the jump in the degeneracy

computed from the exact dyon spectrum.
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The role of multi-centered black holes in the context of exact dyon spectrum of N = 4

supersymmetric string theories has been discussed before in [12]. In this paper the authors

considered a special class of dyonic states for which there is no single centered black hole

solution but whose degeneracy is predicted to be non-zero by the exact formula, and showed

how such states may be represented as 2-centered black holes. However for the charge vector

used in [12] each of these two black holes had entropy of order unity, and hence their role in

producing the correct contribution to the degeneracy was not manifest. In contrast we consider

a dyonic state with large charges for which the change in the degeneracy across the wall of

marginal stability is exponentially large (even though it is exponentially small compared to

the leading contribution). The 2-centered black hole whose (dis)appearance across the wall of

marginal stability is responsible for this jump is a pair of small black holes each carrying large

charges and hence large entropy [20–28]. Thus one can calculate the entropy associated with

this two centered black hole by using standard techniques and compare it with the logarithm

of the jump in the degeneracy across the walls of marginal stability. The result turns out to

be a perfect agreement.

2 Prediction from Exact Dyon Spectrum

Our starting point will be heterotic or type IIA string theory compactified on T 4 × Ŝ1 × S1

modded out by a ZZN group. The action of the ZZN group involves 1/N unit of translation

along S1, together with an order N transformation acting on the degrees of freedom associated

with T 4 and also (in the case of heterotic theory) on the internal left-moving degrees of freedom.

The ZZN action is chosen so that it commutes with all the supersymmetries appearing from the

right-moving sector of the world-sheet but (in case of type IIA string theory) projects out all

the supersymmetries coming from the left-moving sector. In this theory we shall consider dyons

carrying momentum (n′, n̂), winding (−w′,−ŵ), Kaluza-Klein monopole charges (N ′, N̂) and

H-monopole charges (−W ′,−Ŵ ′) along S1 and Ŝ1 respectively. Such a dyon will be labelled

by the electric and magnetic charge vectors

Q =




n̂
n′

ŵ
w′


 , P =




Ŵ
W ′

N̂
N ′


 . (2.1)

The precise sign convention used for defining these charges can be found in [13]. We shall denote

by M the symmetric SO(2, 2) matrix that encodes information about the moduli labelling the

3



torus Ŝ1 × S1 and by a + iS the axion-dilaton modulus. If we denote by the subscript ∞ the

asymptotic values of the various moduli, then the quarter BPS dyon of charge (Q, P ) can decay

into a pair of half BPS states of charges (Q, 0) and (0, P ) on the wall of marginal stability [11]:

a∞ +
(P T (M∞ + L)Q)

[(QT (M∞ + L)Q)(P T (M∞ + L)P ) − (P T (M∞ + L)Q)2]1/2
S∞ = 0 , (2.2)

where

L =

(
0 I2

I2 0

)
(2.3)

is the SO(2, 2) invariant matrix. There are other walls of marginal stability associated with

the decay into other pairs of half-BPS states [11] but we shall carry out our analysis in the

vicinity of the wall (2.2). Other cases may be analyzed in the same way.

We shall consider diagonal M∞ of the form:

M∞ =




R̂−2

R−2

R̂2

R2


 . (2.4)

In this case R̂ and R can be interpreted as the radii of Ŝ1 and S1 respectively, measured in

units of
√

α′. We shall also focus on a special class of dyons for which1

Q =




0
−n/N

0
−1


 , P =




Q1 − 1
−J
Q5

0


 , n, J, Q1, Q5 ∈ ZZ, n, Q1 ≥ 0, Q5 > 0 , (2.5)

since for these states the exact degeneracy – more precisely an index that counts the number

of bosonic minus the number of fermionic supermultiplets2 – can be computed by using a dual

type IIB description [7–9]. In this case (2.2) takes the form:

a∞ = ac, ac ≡ − J R̂

R{Q1 − 1 + R̂2Q5}
S∞ . (2.6)

1By following the procedure given in [13] we could switch on non-zero values of the first and third components
of Q, but in order to keep the various formulæ simple we shall continue to work with the charge vector given
in (2.5).

2The degeneracy d( ~Q, ~P ) given in (2.7) actually refers to the number of bosonic minus fermionic supermul-
tiplets multiplied by a factor of (−1)Q·P+1. The (−1)Q·P+1 factor was not included in the analysis of [7–9,11].
The (−1)Q·P factor appeared in [29] and reflects the change in statistics in going from a five to four dimensional
viewpoint in the presence of a Kaluza-Klein monopole. The additional − sign appears in the study of the bound
state of a D1-D5 system to a Kaluza-Klein monopole [30,31]. These will be discussed in detail in a forthcoming
review [32].
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The weak coupling region of the dual type IIB string theory corresponds to the large R region

in the current description [11]. In this region the degeneracy formula takes the form [7–9]

(see [11] for a review of the results):

d(Q, P ) =

{
d>(Q, P ) for a∞ > ac

d<(Q, P ) for a∞ < ac
, (2.7)

where

d>( ~Q, ~P ) =
1

N

∫

C>

dρ̃ dσ̃ dṽ e−πi(N eρQ2+eσP 2/N+2evQ·P ) 1

Φ̃(ρ̃, σ̃, ṽ)
,

d<( ~Q, ~P ) =
1

N

∫

C<

dρ̃ dσ̃ dṽ e−πi(N eρQ2+eσP 2/N+2evQ·P ) 1

Φ̃(ρ̃, σ̃, ṽ)
. (2.8)

Here

Q2 = QT LQ = 2n/N, P 2 = P T LP = 2Q5(Q1 − 1), Q · P = QT LP = J , (2.9)

Φ̃(ρ̃, σ̃, ṽ) is a known function of three complex variables (ρ̃, σ̃, ṽ) and C> and C< are a pair of

three real dimensional subspaces of the three complex dimensional space labelled by (ρ̃, σ̃, ṽ) ≡
(ρ̃1 + iρ̃2, σ̃1 + iσ̃2, ṽ1 + iṽ2). They are defined as

C> : ρ̃2 = M1, σ̃2 = M2, ṽ2 = −M3,

0 ≤ ρ̃1 ≤ 1, 0 ≤ σ̃1 ≤ N, 0 ≤ ṽ1 ≤ 1 ,

C< : ρ̃2 = M1, σ̃2 = M2, ṽ2 = M3,

0 ≤ ρ̃1 ≤ 1, 0 ≤ σ̃1 ≤ N, 0 ≤ ṽ1 ≤ 1 , (2.10)

M1, M2 and M3 being large but fixed positive numbers with M3 << M1, M2. For ṽ ≃ 0, Φ̃

takes the form:

Φ̃(ρ̃, σ̃, ṽ) = −4π2 ṽ2 f(Nρ̃)g(σ̃/N) + O(ṽ4) , (2.11)

where (f(τ))−1 and (g(τ))−1 have the interpretation of the generating function for the degen-

eracies of purely electric half-BPS states and purely magnetic half-BPS states respectively. For

example for the ZZN orbifold of the heterotic string theory on T 4 × Ŝ1 × S1 with prime values

of N we have [4]

f(τ) = (η(τ/N))k+2η(τ)k+2, g(τ) = (η(τ))k+2η(Nτ)k+2 , k ≡ 24

N + 1
− 2 . (2.12)

For N = 1, ı.e. for heterotic string theory on T 4 × Ŝ1 × S1, this gives us back the standard

result η(τ)24 for both f(τ) and g(τ).
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The jump in the degeneracy as we move from a∞ < ac to a∞ > ac is determined by an

integral over the difference between the contours C> and C<. The contribution to this integral

comes from the pole of the integrand at ṽ = 0 [11]. Substituting (2.11) into (2.8) and evaluating

the residue at the pole at ṽ = 0 we get

d>(Q, P ) − d<(Q, P ) = −Q · P del(Q) dmag(P ) , (2.13)

where

del(Q) =

∫ 1

0

dρ̃ e−iπN eρQ2

(f(Nρ̃))−1 , dmag(P ) =
1

N

∫ N

0

dσ̃ e−iπeσP 2/N (g(σ̃/N))−1 ,

(2.14)

are the degeneracies of purely electric and purely magnetic half-BPS states carrying charges

Q and P respectively. Thus ln del(Q) and ln dmag(P ) are the entropies of small black holes of

electric charge Q and magnetic charge P respectively. Since ln |Q · P | is subleading compared

to these entropies for large Q2 and P 2 ı.e. for

n, Q1, Q5 >> 1 , (2.15)

we see that ln |d>(Q, P ) − d<(Q, P )| can be identified as the sum of the entropies of a small

electric black hole of charge Q and a small magnetic black hole of charge P . In carrying out

the analysis on the black hole side we shall choose charge vectors satisfying (2.15).

Taking into account the sign of the right hand side of (2.13), and assuming that this phe-

nomenon has a description in the dual black hole picture, we can draw the following conclusion:3

For J(= Q · P ) > 0, as we cross the wall of marginal stability (2.6) from a∞ > ac to a∞ < ac,

a new configuration should appear whose entropy is equal to the sum of the entropies of a small

electric black hole of charge Q and a small magnetic black hole of charge P . On the other hand

for J(= Q ·P ) < 0, as we cross the wall of marginal stability (2.6) from a∞ < ac to a∞ > ac, a

new configuration should appear whose entropy is equal to the sum of the entropies of a small

electric black hole of charge Q and a small magnetic black hole of charge P .

In §3 we shall verify this explicitly by identifying the new configuration as a two centered black

hole solution with an electric center of charge vector Q and a magnetic center of charge vector

P .
3There are two points to note here. First when a new configuration with same charge appears in the black

hole system, its degeneracy (or more precisely the index), ı.e. exponential of the entropy, will add to the
degeneracy of the other configurations of the same charge. Second, we shall be implicitly assuming that the
new system that appears gives a positive contribution to d( ~Q, ~P ). Otherwise the condition on Q · P stated in

the proposal will be reversed. With the sign convention for d( ~Q, ~P ) described in footnote 2 this assumption is
consistent with the wall crossing formula of [18, 33].
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3 Two Centered Small Black Holes

For describing the two centered black hole we shall use the N = 2 supersymmetric description

of the same system described above. In the supergravity approximation the relevant part of

the theory is described by the prepotential (see [34] for a review):

F = −X1X2X3

X0
, (3.1)

where XI ’s are scalar fields. These are related to the scalar fields a+iS and M via the relations

a + iS =
X1

X0
, T = −i

X2

X0
, U = −i

X3

X0
, (3.2)

iT and iU being the Kahler and complex structure modulus of the torus Ŝ1×S1. They contain

the same information as the matrix M . In particular for the asymptotic M given in (2.4), we

have

T∞ = RR̂, U∞ = R̂/R . (3.3)

The theory contains four gauge fields, and we shall denote the electric and magnetic charges

associated with these gauge fields by q0, q1, q2, q3 and p0, p1, p2, p3 respectively. These charges

can be related to the charge vectors Q and P introduced earlier via the relation:

Q =




q0

q3

−p1

q2


 , P =




q1

p2

p0

p3


 . (3.4)

Thus for the configuration (2.5) we have

(q0, q1, q2, q3) = (0, Q1 − 1,−1,−n/N), (p0, p1, p2, p3) = (Q5, 0,−J, 0) . (3.5)

The theory has an underlying gauge invariance that allows for a scaling of all the XI ’s by a

complex function. We shall fix this gauge using the gauge condition:

i(X̄IFI − XIF̄I) = 1 , FI ≡ ∂F/∂XI , (3.6)

which amounts to setting α′ = 8. This fixes the normalization but not the overall phase of the

XI ’s. While studying a black hole solution carrying a given set of charges, it will be convenient

to fix the overall phase of the XI ’s such that

Arg(qIX
I − pIFI) = π at ~r = ∞ . (3.7)
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In this gauge one can construct a general multi-centered black hole solution with charges

(q(s), p(s)) located at ~rs. The locations ~rs are constrained by the equations [15–17]

hIp
(s)I − hIq

(s)
I +

∑

t6=s

p(s)Iq
(t)
I − q

(s)
I p(t)I

|~rs − ~rt|
= 0 (3.8)

where hI and hI are constants defined through the equations

XI
∞ − X̄I

∞ = ihI , FI∞ − F̄I∞ = ihI . (3.9)

If we define α and β via the relations

X0
∞ = α + iβ , (3.10)

then using (3.1)-(3.3) and (3.9) we get

h0 = 2β, h1 = 2(βa∞ + αS∞), h2 = 2R̂Rα, h3 = 2R̂α/R,

h0 = −2R̂2(αS∞ + βa∞), h1 = 2βR̂2, h2 = 2R̂(βS∞ − αa∞)/R,

h3 = 2R̂R(βS∞ − αa∞) . (3.11)

The gauge condition (3.6) gives

α2 + β2 = (8R̂2S∞)−1 . (3.12)

To proceed further we need to focus on a specific multi-centered solution. Since our goal is

to identify a configuration whose entropy is the sum of the entropies of a purely electric small

black hole of charge Q and a purely magnetic small black hole of charge P , the natural object

to focus on is a two centered solution with electric charge Q at one center and a magnetic

charge P at the other center. This will automatically have the desired entropy.4 Using (2.5),

(3.4) we see that the charges at the two centers are given by:

q(1) = (0, 0,−1,−n/N), p(1) = (0, 0, 0, 0), q(2) = (0, Q1 − 1, 0, 0), p(2) = (Q5, 0,−J, 0) .

(3.13)

4In the supergravity approximation the solution is singular at each center, but once higher derivative cor-
rections are taken into account each center is transformed into the near horizon geometry of a non-singular
extremal black hole with finite entropy equal to the statistical entropy of the corresponding microstates. This
has been demonstrated explicitly for the ZZN orbifolds of heterotic string theory on T 4 × Ŝ1 × S1 [20–28]. In
this case the modifications of the solution due to higher derivative corrections can be found using the method
developed in [35]. This approach fails for type II string compactification, most likely due to the absence of an
AdS3 factor in the near horizon geometry of the small black hole. However it is expected that once the effect
of full set of higher derivative terms are taken into account the entropy of a small black hole in type II string
theory will also reproduce the statistical entropy of the corresponding microstates.
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Eqs.(3.8) for s = 1 and 2 now gives:

h2 +
n

N
h3 =

J

L
, (3.14)

h0Q5 − h2J − h1(Q1 − 1) +
J

L
= 0 , (3.15)

where L = |~r1 − ~r2| is the separation between the two centers. Using (3.11) and (3.14) we get

α =
J

2L

1

RR̂ + n
N

bR
R

. (3.16)

Using (3.11) and (3.16) we may now express (3.15) as

β

(
a∞(Q1 − 1 + R̂2Q5) +

R̂JS∞

R

)
+ α

(
(Q1 − 1 + R̂2Q5)S∞ − R̂R − n

N

R̂

R
− R̂Ja∞

R

)
= 0 .

(3.17)

Substituting (3.16), (3.17) into (3.12) we can determine L. The ambiguity in determining the

sign of L can be fixed using (3.7).

We are interested in determining under what conditions the two centered black hole solution

described above exists. For this we note that a sensible solution should have positive value of

L. Typically as we change the values of the asymptotic moduli keeping the charges fixed, the

value of L changes. On some subspace of codimension 1 the value of L becomes infinite and

beyond that the solution gives negative values of L which means that the solution does not

exist. To determine this codimension 1 subspace we simply need to determine the conditions

on the asymptotic moduli for which L = ∞. From (3.16) we see that in this case α = 0. Since

eq.(3.12) now requires β to be non-zero, we see from (3.17) that

a∞(Q1 − 1 + R̂2Q5) + R̂JS∞/R = 0 . (3.18)

This is identical to the condition (2.6) for marginal stability [15]. Thus we conclude that as

a∞ passes through ac, the two centered black hole solution carrying an entropy equal to the

sum of the entropies of a small electric black hole of charge Q and a small magnetic black hole

of charge P , (dis)appears from the spectrum. This is precisely what was predicted at the end

of §2 by analyzing the exact formula for the degeneracy of dyons.

In order to complete the verification of the predictions made at the end of §2 we need to

determine on which side of the a∞ = ac line the two centered solution exists. For this we use
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eq.(3.7). For the solution under consideration this gives, using (3.17),

α

(
a∞(Q1 − 1 + R̂2Q5) +

R̂JS∞

R

)


1 +

(
(Q1 − 1 + R̂2Q5)S∞ − R̂R − n

N

bR
R
− bRJa∞

R

)2

(
a∞(Q1 − 1 + R̂2Q5) +

bRJS∞
R

)2





< 0 .

(3.19)

First consider the case J > 0. Since L must be positive for the two centered solution to exist,

we see from (3.16) that α > 0. In this case the term on the left hand side of (3.19) is negative

for a∞ < ac and positive for a∞ > ac. Thus the inequality is satisfied only for a∞ < ac, leading

to the conclusion that the two centered black hole exists only for a∞ < ac. A similar analysis

shows that for J < 0, the two centered black hole exists only for a∞ > ac. This is exactly

what has been predicted at the end of §2 from the analysis of the exact dyon spectrum of the

theory.

4 Conclusion

The main conclusion that can be drawn from the analysis of this paper is that the exact formula

for the degeneracy of dyons in N = 4 supersymmetric string theories encodes information not

only about the single centered black holes, but also about the multi-centered black holes whose

total charge adds up to that of the dyon whose degeneracy is under consideration. Since in

the present example the contribution to the degeneracy from the two centered black holes is

exponentially small compared to that from the single centered black hole, our results indicate

that the correspondence between the microscopic degeneracy of states and black hole entropy

extends beyond the leading asymptotic expansion, – not only for terms which are suppressed

by inverse powers of charges but also for terms which are exponentially suppressed.

Note added: The relation between the two centered black holes and the jump in the degen-

eracy in N = 4 dyon spectrum has also been discussed in [36] which appered a few days after

this paper was first submitted to the arXiv.
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