34 research outputs found

    Optimal discrete-time control for non-linear cascade systems

    Get PDF
    In this paper we develop an optimality-based framework for designing controllers for discrete-time nonlinear cascade systems. Specifically, using a nonlinear-nonquadratic optimal control framework we develop a family of globally stabilizing backstepping-type controllers parameterized by the cost functional that is minimized. Furthermore, it is shown that the control Lyapunov function guaranteeing closed-loop stability is a solution to the steady-state Bellman equation for the controlled system and thus guarantees both optimality and stability

    Polynomial time algorithms to determine weakly reversible realizations of chemical reaction networks

    Get PDF
    Weak reversibility is a crucial structural property of chemical reaction networks (CRNs) with mass action kinetics, because it has major implications related to the existence, uniqueness and stability of equilibrium points and to the boundedness of solutions. In this paper, we present two new algorithms to find dynamically equivalent weakly reversible realizations of a given CRN. They are based on linear programming and thus have polynomial time-complexity. Hence, these algorithms can deal with large-scale biochemical reaction networks, too. Furthermore, one of the methods is able to deal with linearly conjugate networks, too. © 2014 Springer International Publishing Switzerland

    A Formal Proof in Coq of LaSalle's Invariance Principle

    Get PDF
    International audienceStability analysis of dynamical systems plays an important role in the study of control techniques. LaSalle's invariance principle is a result about the asymptotic stability of the solutions to a nonlinear system of differential equations and several extensions of this principle have been designed to fit different particular kinds of system. In this paper we present a formalization, in the Coq proof assistant, of a slightly improved version of the original principle. This is a step towards a formal verification of dynamical systems

    Numerical preservation of velocity induced invariant regions for reaction-diffusion systems on evolving surfaces

    Get PDF
    We propose and analyse a finite element method with mass lumping (LESFEM) for the numerical approximation of reaction-diffusion systems (RDSs) on surfaces in R3 that evolve under a given velocity field. A fully-discrete method based on the implicit-explicit (IMEX) Euler time-discretisation is formulated and dilation rates which act as indicators of the surface evolution are introduced. Under the assumption that the mesh preserves the Delaunay regularity under evolution, we prove a sufficient condition, that depends on the dilation rates, for the existence of invariant regions (i) at the spatially discrete level with no restriction on the mesh size and (ii) at the fully-discrete level under a timestep restriction that depends on the kinetics, only. In the specific case of the linear heat equation, we prove a semi- and a fully-discrete maximum principle. For the well-known activator-depleted and Thomas reaction-diffusion models we prove the existence of a family of rectangles in the phase space that are invariant only under specific growth laws. Two numerical examples are provided to computationally demonstrate (i) the discrete maximum principle and optimal convergence for the heat equation on a linearly growing sphere and (ii) the existence of an invariant region for the LESFEM-IMEX Euler discretisation of a RDS on a logistically growing surface

    Flux-dependent graphs for metabolic networks

    Get PDF
    Cells adapt their metabolic fluxes in response to changes in the environment. We present a framework for the systematic construction of flux-based graphs derived from organism-wide metabolic networks. Our graphs encode the directionality of metabolic fluxes via edges that represent the flow of metabolites from source to target reactions. The methodology can be applied in the absence of a specific biological context by modelling fluxes probabilistically, or can be tailored to different environmental conditions by incorporating flux distributions computed through constraint-based approaches such as Flux Balance Analysis. We illustrate our approach on the central carbon metabolism of Escherichia coli and on a metabolic model of human hepatocytes. The flux-dependent graphs under various environmental conditions and genetic perturbations exhibit systemic changes in their topological and community structure, which capture the re-routing of metabolic fluxes and the varying importance of specific reactions and pathways. By integrating constraint-based models and tools from network science, our framework allows the study of context-specific metabolic responses at a system level beyond standard pathway descriptions

    Neural Network Adaptive Control for Nonlinear Nonnegative Dynamical Systems

    No full text
    corecore