22 research outputs found

    Darwin\u27s Warm Little Pond: A One‐Pot Reaction for Prebiotic Phosphorylation and the Mobilization of Phosphate from Minerals in a Urea‐Based Solvent

    No full text
    The poor reactivity of insoluble phosphates, such as apatite‐group minerals, has been a long‐appreciated obstacle for proposed models of prebiotic organophosphate formation. This obstacle presents a significant challenge to the nascent development of an RNA world and other models for the origins of life on Earth. Herein, we demonstrate that a scenario based on the formation of a urea/ammonium formate/water (UAFW) eutectic solution leads to an increase in phosphorylation when compared to urea alone for phosphate sources of varying solubility. In addition, under evaporative conditions and in the presence of MgSO4, the UAFW eutectic mobilizes the phosphate sequestered in water‐insoluble hydroxyapatite, giving rise to a marked increase in phosphorylation. These results suggest that the prebiotic concentrations of urea in a geologically plausible evaporitic environment could solve the problem of organic phosphorylation on a prebiotic Earth

    The Prebiotic Provenance of Semi-Aqueous Solvents

    Get PDF
    The numerous and varied roles of phosphorylated organic molecules in biochemistry suggest they may have been important to the origin of life. The prominence of phosphorylated molecules presents a conundrum given that phosphorylation is a thermodynamically unfavorable, endergonic process in water, and most natural sources of phosphate are poorly soluble. We recently demonstrated that a semi-aqueous solvent consisting of urea, ammonium formate, and water (UAFW) supports the dissolution of phosphate and the phosphorylation of nucleosides. However, the prebiotic feasibility and robustness of the UAFW system are unclear. Here, we study the UAFW system as a medium in which phosphate minerals are potentially solubilized. Specifically, we conduct a series of chemical experiments alongside thermodynamic models that simulate the formation of ammonium formate from the hydrolysis of hydrogen cyanide, and demonstrate the stability of formamide in such solvents (as an aqueous mixture). The dissolution of hydroxylapatite requires a liquid medium, and we investigate whether a UAFW system is solid or liquid over varied conditions, finding that this characteristic is controlled by the molar ratios of the three components. For liquid UAFW mixtures, we also find the solubility of phosphate is higher when the quantity of ammonium formate is greater than urea. We suggest the urea within the system can lower the activity of water, help create a stable and persistent solution, and may act as a condensing agent/catalyst to improve nucleoside phosphorylation yields
    corecore