6,442 research outputs found
Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization
Structural heterogeneity constitutes one of the main substrates influencing impulse propagation in living tissues. In cardiac muscle, improved understanding on its role is key to advancing our interpretation of cell-to-cell coupling, and how tissue structure modulates electrical propagation and arrhythmogenesis in the intact and diseased heart. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a mean of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, validated against in-vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies many relevant characteristics of cardiac propagation, including the shortening of action potential duration along the activation pathway, and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media
Advanced Forward Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and Zeeman Effects
A big challenge in solar and stellar physics in the coming years will be to
decipher the magnetism of the solar outer atmosphere (chromosphere and corona)
along with its dynamic coupling with the magnetic fields of the underlying
photosphere. To this end, it is important to develop rigorous diagnostic tools
for the physical interpretation of spectropolarimetric observations in suitably
chosen spectral lines. Here we present a computer program for the synthesis and
inversion of Stokes profiles caused by the joint action of atomic level
polarization and the Hanle and Zeeman effects in some spectral lines of
diagnostic interest, such as those of the He I 10830 A and D_3 multiplets. It
is based on the quantum theory of spectral line polarization, which takes into
account all the relevant physical mechanisms and ingredients (optical pumping,
atomic level polarization, Zeeman, Paschen-Back and Hanle effects). The
influence of radiative transfer on the emergent spectral line radiation is
taken into account through a suitable slab model. The user can either calculate
the emergent intensity and polarization for any given magnetic field vector or
infer the dynamical and magnetic properties from the observed Stokes profiles
via an efficient inversion algorithm based on global optimization methods. The
reliability of the forward modeling and inversion code presented here is
demonstrated through several applications, which range from the inference of
the magnetic field vector in solar active regions to determining whether or not
it is canopy-like in quiet chromospheric regions. This user-friendly diagnostic
tool called "HAZEL" (from HAnle and ZEeman Light) is offered to the
astrophysical community, with the hope that it will facilitate new advances in
solar and stellar physics.Comment: 62 pages, 19 figures, 3 tables. Accepted for publication in Ap
Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation
Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation
Program development using abstract interpretation (and the ciao system preprocessor)
The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation
as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system librarles), to genérate and simplify run-time tests, and to perform high-level program transformations such as múltiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas
The CIAO multiparadigm compiler and system: A progress report
Abstract is not available
Dichroic Masers due to Radiation Anisotropy and the Influence of the Hanle Effect on the Circumstellar SiO Polarization
The theory of the generation and transfer of polarized radiation, mainly
developed for interpreting solar spectropolarimetric observations, allows to
reconsider, in a more rigorous and elegant way, a physical mechanism that has
been suggested some years ago to interpret the high degree of polarization
often observed in astronomical masers. This mechanism, for which the name of
'dichroic maser' is proposed, can operate when a low density molecular cloud is
illuminated by an anisotropic source of radiation (like for instance a nearby
star). Here we investigate completely unsaturated masers and show that
selective stimulated emission processes are capable of producing highly
polarized maser radiation in a non-magnetic environment. The polarization of
the maser radiation is linear and is directed tangentially to a ring
equidistant to the central star. We show that the Hanle effect due to the
presence of a magnetic field can produce a rotation (from the tangential
direction) of the polarization by more that 45 degrees for some selected
combinations of the strength, inclination and azimuth of the magnetic field
vector. However, these very same conditions produce a drastic inhibition of the
maser effect. The rotations of about 90 degrees observed in SiO masers in the
evolved stars TX Cam by Kemball & Diamond (1997) and IRC+10011 by Desmurs et al
(2000) may then be explainedby a local modification of the anisotropy of the
radiation field, being transformed from mainly radial to mainly tangential.Comment: Accepted for publication on Ap
Analysis of concurrent constraint logic programs with a fixed scheduling rule
The analysis of concurrent constraint programs is a challenge due to the inherently concurrent behaviour of its computational model. However, most implementations of the concurrent paradigm can be viewed as a computation with a fixed scheduling rule which suspends some goals so that their execution is postponed until some condition awakens them. For a certain kind of properties, an analysis defined in these terms is correct. Furthermore, it is much more tractable, and in addition can make use of existing analysis technology for the underlying fixed computation rule. We show how this can be done when the starting point is a framework for the analysis of sequential programs. The resulting analysis, which incorporates suspensions, is adequate for concurrent models where concurrency is localized, e.g. the Andorra model. We refine the analysis for this particular case. Another model in which concurrency is preferably encapsulated, and thus suspensions are local to parts of the computation, is that of CIAO. Nonetheless, the analysis scheme can be generalized to models with global concurrency. We also sketch how this could be done, and we show how the resulting
analysis framework could be used for analyzing typical properties, such as suspensión freeness
An automatic translation scheme from CLP to AKL
The Andorra Kernel language scheme was aimed, in principle, at simultaneously supporting the programming styles of Prolog and committed choice languages. Within the constraint programming paradigm, this family of languages could also in principle support the concurrent constraint paradigm. This happens for the Agents Kernel Language (AKL). On the other hand, AKL requires a somewhat detailed specification of control by the user. This could be avoided by programming in CLP to run on AKL. However, CLP programs cannot be executed directly on AKL. This is due to a number
of factors, from more or less trivial syntactic differences to more involved issues such as the treatment of cut and making the exploitation of certain types of parallelism
possible. This paper provides a translation scheme which is a basis of an automatic compiler of CLP programs into AKL, which can bridge those differences. In addition to supporting CLP, our style of translation achieves independent and-parallel execution where possible, which is relevant since this type of parallel execution preserves, through the translation, the user-perceived "complexity" of the original program
An automatic translation scheme from prolog to the andorra kernel language
The Andorra family of languages (which includes the Andorra Kernel Language -AKL) is aimed, in principie, at simultaneously supporting the programming styles of Prolog and committed choice languages. On the other hand, AKL requires a somewhat detailed specification of control by the user. This could be avoided by programming in Prolog to run on AKL. However, Prolog programs cannot be executed directly on AKL. This is due to a number of factors, from
more or less trivial syntactic differences to more involved issues such as the treatment of cut and making the exploitation of certain types of parallelism possible. This paper provides basic guidelines for constructing an automatic compiler of Prolog programs into AKL, which can
bridge those differences. In addition to supporting Prolog, our style of translation achieves independent and-parallel execution where possible, which is relevant since this type of parallel execution preserves, through the translation, the user-perceived "complexity" of the original Prolog program
Matter profile effect in neutrino factory
We point out that the matter profile effect --- the effect of matter density
fluctuation on the baseline --- is very important to estimate the parameters in
a neutrino factory with a very long baseline. To make it clear, we propose the
method of the Fourier series expansion of the matter profile. By using this
method, we can take account of both the matter profile effect and its
ambiguity. For very long baseline experiment, such as L=7332km, in the analysis
of the oscillation phenomena we need to introduce a new parameter ---
the Fourier coefficient of the matter profile --- as a theoretical parameter to
deal with the matter profile effects.Comment: 21 pages, 15 figure
- …