267 research outputs found

    Time-dependent quantum transport: an exact formulation based on TDDFT

    Full text link
    An exact theoretical framework based on Time Dependent Density Functional Theory (TDDFT) is proposed in order to deal with the time-dependent quantum transport in fully interacting systems. We use a \textit{partition-free} approach by Cini in which the whole system is in equilibrium before an external electric field is switched on. Our theory includes the interactions between the leads and between the leads and the device. It is well suited for calculating measurable transient phenomena as well as a.c. and other time-dependent responses. We show that the steady-state current results from a \textit{dephasing mechanism} provided the leads are macroscopic and the device is finite. In the d.c. case, we obtain a Landauer-like formula when the effective potential of TDDFT is uniform deep inside the electrodes.Comment: final version, 7 pages, 1 figur

    A simplified protocol for the detection of blood, saliva, and semen from a single biological trace using immunochromatographic tests.

    Get PDF
    The detection of body fluids (e.g., blood, saliva or semen) provides information that is important both for the investigation and for the choice of the analytical protocols. Because of their sensitivity, specificity, as well as their simplicity of use, immunochromatographic tests are widely applied. These tests target different body fluids and generally require specific buffer solutions. If one needs to investigate whether the material is of a specific nature (e.g., blood), this is fine. However, if the material can also contain other material (e.g., saliva or semen) then the use of different tests can be problematic. Indeed, if the different tests require different buffers, it will not be possible to perform all tests on the exact same specimen.In this study, we assess the use of the RSID™-universal buffer to perform three immunochromatographic tests (HEXAGON OBTI, RSID-saliva, and PSA Semiquant) as well as spermatozoa detection. We use the same eluate for the detection of all three body fluids. The proposed protocol provides similar results to those obtained when each test is conducted independently. Furthermore, it does not affect the quality of the DNA profiles. The main advantage of this protocol is that the results of the presumptive test(s) and of the DNA analyses are representative of the exact same specimen

    Mass-Transport Models with Multiple-Chipping Processes

    Get PDF
    We study mass-transport models with multiple-chipping processes. The rates of these processes are dependent on the chip size and mass of the fragmenting site. In this context, we consider k-chip moves (where k = 1, 2, 3, ....); and combinations of 1-chip, 2-chip and 3-chip moves. The corresponding mean-field (MF) equations are solved to obtain the steady-state probability distributions, P (m) vs. m. We also undertake Monte Carlo (MC) simulations of these models. The MC results are in excellent agreement with the corresponding MF results, demonstrating that MF theory is exact for these models.Comment: 18 pages, 4 figures, To appear in European Physical Journal

    Apparent Fractality Emerging from Models of Random Distributions

    Full text link
    The fractal properties of models of randomly placed nn-dimensional spheres (nn=1,2,3) are studied using standard techniques for calculating fractal dimensions in empirical data (the box counting and Minkowski-sausage techniques). Using analytical and numerical calculations it is shown that in the regime of low volume fraction occupied by the spheres, apparent fractal behavior is observed for a range of scales between physically relevant cut-offs. The width of this range, typically spanning between one and two orders of magnitude, is in very good agreement with the typical range observed in experimental measurements of fractals. The dimensions are not universal and depend on density. These observations are applicable to spatial, temporal and spectral random structures. Polydispersivity in sphere radii and impenetrability of the spheres (resulting in short range correlations) are also introduced and are found to have little effect on the scaling properties. We thus propose that apparent fractal behavior observed experimentally over a limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at http://www.fh.huji.ac.il/~dani

    A Re-Annotation of the Saccharomyces Cerevisiae Genome

    Get PDF
    Discrepancies in gene and orphan number indicated by previous analyses suggest that S. cerevisiae would benefit from a consistent re-annotation. In this analysis three new genes are identified and 46 alterations to gene coordinates are described. 370 ORFs are defined as totally spurious ORFs which should be disregarded. At least a further 193 genes could be described as very hypothetical, based on a number of criteria. It was found that disparate genes with sequence overlaps over ten amino acids (especially at the N-terminus) are rare in both S. cerevisiae and Sz. pombe. A new S. cerevisiae gene number estimate with an upper limit of 5804 is proposed, but after the removal of very hypothetical genes and pseudogenes this is reduced to 5570. Although this is likely to be closer to the true upper limit, it is still predicted to be an overestimate of gene number. A complete list of revised gene coordinates is available from the Sanger Centre (S. cerevisiae reannotation: ftp://ftp/pub/yeast/SCreannotation)

    Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution

    Get PDF
    The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surface kinetics and bulk to surface diffusion, from which concentration distributions and fluxes are obtained directly. It was found that the (001) face showed strong mass transport (diffusion) controlled behavior with an average surface concentration close to the solubility value during growth and dissolution over a wide range of bulk saturation levels. The (1̅10) and (110) faces exhibited mixed mass transport/surface controlled behavior, but with a strong diffusive component. As crystals became relatively large, they tended to exhibit peculiar hollow structures in the end (001) face, observed by interferometry and optical microscopy. Such features have been reported in a number of crystals, but there has not been a satisfactory explanation for their origin. The mass transport simulations indicate that there is a large difference in flux across the crystal surface, with high values at the edge of the (001) face compared to the center, and this flux has to be redistributed across the (001) surface. As the crystal grows, the redistribution process evidently can not be maintained so that the edges grow at the expense of the center, ultimately creating high index internal structures. At later times, we postulate that these high energy faces, starved of material from solution, dissolve and the extra flux of salicylic acid causes the voids to close

    Phase Structures of Magnetic Impurity Models with Two-Body Hybridization

    Full text link
    The most general model with a magnetic impurity coupled to hybridizing and screening channels of a conduction band is considered. The partition function of the system is asymptotically equivalent to that of the multi-component kink plasma with a weak external field. The scaling properties of the models for finite UU are sketched by using the Anderson-Yuval-Hamann-Cardy poor man's scaling theory. We point out that it is proper to include a two-body hybridization in order to obtain correct renormalization flows. The phase structures are studied graphically for the general model and various reduced models. A Fermi-non-Fermi liquid phase transition is found for all the models. We also show all possible phases with different finite temperature behaviors though they have the same Fermi liquid fixed point at low temperature. We also discuss the fixed point behaviors in the mixed valence state regime.Comment: 18 pages, revtex, 3 figures in latex version, to be published in PR

    Calculations of the Knight Shift Anomalies in Heavy Electron Materials

    Full text link
    We have studied the Knight shift K(r,T)K(\vec r, T) and magnetic susceptibility χ(T)\chi(T) of heavy electron materials, modeled by the infinite U Anderson model with the NCA method. A systematic study of K(r,T)K(\vec r, T) and χ(T)\chi(T) for different Kondo temperatures T0T_0 (which depends on the hybridization width Γ\Gamma) shows a low temperature anomaly (nonlinear relation between KK and χ\chi) which increases as the Kondo temperature T0T_0 and distance rr increase. We carried out an incoherent lattice sum by adding the K(r)K(\vec r) of a few hundred shells of rare earth atoms around a nucleus and compare the numerically calculated results with the experimental results. For CeSn_3, which is a concentrated heavy electron material, both the ^{119}Sn NMR Knight shift and positive muon Knight shift are studied. Also, lattice coherence effects by conduction electron scattering at every rare earth site are included using the average-T matrix approximation. Also NMR Knight shifts for YbCuAl and the proposed quadrupolar Kondo alloy Y_{0.8}U_{0.2}Pd_{3} are studied.Comment: 31 pages of RevTex, 22 Postscript figures, submmitted to PRB, some figures are delete

    Engineered Anopheles Immunity to Plasmodium Infection

    Get PDF
    A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control
    corecore