267 research outputs found
Time-dependent quantum transport: an exact formulation based on TDDFT
An exact theoretical framework based on Time Dependent Density Functional
Theory (TDDFT) is proposed in order to deal with the time-dependent quantum
transport in fully interacting systems. We use a \textit{partition-free}
approach by Cini in which the whole system is in equilibrium before an external
electric field is switched on. Our theory includes the interactions between the
leads and between the leads and the device. It is well suited for calculating
measurable transient phenomena as well as a.c. and other time-dependent
responses. We show that the steady-state current results from a
\textit{dephasing mechanism} provided the leads are macroscopic and the device
is finite. In the d.c. case, we obtain a Landauer-like formula when the
effective potential of TDDFT is uniform deep inside the electrodes.Comment: final version, 7 pages, 1 figur
A simplified protocol for the detection of blood, saliva, and semen from a single biological trace using immunochromatographic tests.
The detection of body fluids (e.g., blood, saliva or semen) provides information that is important both for the investigation and for the choice of the analytical protocols. Because of their sensitivity, specificity, as well as their simplicity of use, immunochromatographic tests are widely applied. These tests target different body fluids and generally require specific buffer solutions. If one needs to investigate whether the material is of a specific nature (e.g., blood), this is fine. However, if the material can also contain other material (e.g., saliva or semen) then the use of different tests can be problematic. Indeed, if the different tests require different buffers, it will not be possible to perform all tests on the exact same specimen.In this study, we assess the use of the RSID™-universal buffer to perform three immunochromatographic tests (HEXAGON OBTI, RSID-saliva, and PSA Semiquant) as well as spermatozoa detection. We use the same eluate for the detection of all three body fluids. The proposed protocol provides similar results to those obtained when each test is conducted independently. Furthermore, it does not affect the quality of the DNA profiles. The main advantage of this protocol is that the results of the presumptive test(s) and of the DNA analyses are representative of the exact same specimen
Mass-Transport Models with Multiple-Chipping Processes
We study mass-transport models with multiple-chipping processes. The rates of
these processes are dependent on the chip size and mass of the fragmenting
site. In this context, we consider k-chip moves (where k = 1, 2, 3, ....); and
combinations of 1-chip, 2-chip and 3-chip moves. The corresponding mean-field
(MF) equations are solved to obtain the steady-state probability distributions,
P (m) vs. m. We also undertake Monte Carlo (MC) simulations of these models.
The MC results are in excellent agreement with the corresponding MF results,
demonstrating that MF theory is exact for these models.Comment: 18 pages, 4 figures, To appear in European Physical Journal
Apparent Fractality Emerging from Models of Random Distributions
The fractal properties of models of randomly placed -dimensional spheres
(=1,2,3) are studied using standard techniques for calculating fractal
dimensions in empirical data (the box counting and Minkowski-sausage
techniques). Using analytical and numerical calculations it is shown that in
the regime of low volume fraction occupied by the spheres, apparent fractal
behavior is observed for a range of scales between physically relevant
cut-offs. The width of this range, typically spanning between one and two
orders of magnitude, is in very good agreement with the typical range observed
in experimental measurements of fractals. The dimensions are not universal and
depend on density. These observations are applicable to spatial, temporal and
spectral random structures. Polydispersivity in sphere radii and
impenetrability of the spheres (resulting in short range correlations) are also
introduced and are found to have little effect on the scaling properties. We
thus propose that apparent fractal behavior observed experimentally over a
limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at
http://www.fh.huji.ac.il/~dani
A Re-Annotation of the Saccharomyces Cerevisiae Genome
Discrepancies in gene and orphan number indicated by previous analyses suggest that
S. cerevisiae would benefit from a consistent re-annotation. In this analysis three new genes
are identified and 46 alterations to gene coordinates are described. 370 ORFs are defined
as totally spurious ORFs which should be disregarded. At least a further 193 genes could
be described as very hypothetical, based on a number of criteria.
It was found that disparate genes with sequence overlaps over ten amino acids (especially
at the N-terminus) are rare in both S. cerevisiae and Sz. pombe. A new S. cerevisiae gene
number estimate with an upper limit of 5804 is proposed, but after the removal of very
hypothetical genes and pseudogenes this is reduced to 5570. Although this is likely to be
closer to the true upper limit, it is still predicted to be an overestimate of gene number. A
complete list of revised gene coordinates is available from the Sanger Centre (S. cerevisiae
reannotation: ftp://ftp/pub/yeast/SCreannotation)
Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution
The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surface kinetics and bulk to surface diffusion, from which concentration distributions and fluxes are obtained directly. It was found that the (001) face showed strong mass transport (diffusion) controlled behavior with an average surface concentration close to the solubility value during growth and dissolution over a wide range of bulk saturation levels. The (1̅10) and (110) faces exhibited mixed mass transport/surface controlled behavior, but with a strong diffusive component. As crystals became relatively large, they tended to exhibit peculiar hollow structures in the end (001) face, observed by interferometry and optical microscopy. Such features have been reported in a number of crystals, but there has not been a satisfactory explanation for their origin. The mass transport simulations indicate that there is a large difference in flux across the crystal surface, with high values at the edge of the (001) face compared to the center, and this flux has to be redistributed across the (001) surface. As the crystal grows, the redistribution process evidently can not be maintained so that the edges grow at the expense of the center, ultimately creating high index internal structures. At later times, we postulate that these high energy faces, starved of material from solution, dissolve and the extra flux of salicylic acid causes the voids to close
Phase Structures of Magnetic Impurity Models with Two-Body Hybridization
The most general model with a magnetic impurity coupled to hybridizing and
screening channels of a conduction band is considered. The partition function
of the system is asymptotically equivalent to that of the multi-component kink
plasma with a weak external field. The scaling properties of the models for
finite are sketched by using the Anderson-Yuval-Hamann-Cardy poor man's
scaling theory. We point out that it is proper to include a two-body
hybridization in order to obtain correct renormalization flows. The phase
structures are studied graphically for the general model and various reduced
models. A Fermi-non-Fermi liquid phase transition is found for all the models.
We also show all possible phases with different finite temperature behaviors
though they have the same Fermi liquid fixed point at low temperature. We also
discuss the fixed point behaviors in the mixed valence state regime.Comment: 18 pages, revtex, 3 figures in latex version, to be published in PR
Calculations of the Knight Shift Anomalies in Heavy Electron Materials
We have studied the Knight shift and magnetic susceptibility
of heavy electron materials, modeled by the infinite U Anderson model
with the NCA method. A systematic study of and for
different Kondo temperatures (which depends on the hybridization width
) shows a low temperature anomaly (nonlinear relation between and
) which increases as the Kondo temperature and distance
increase. We carried out an incoherent lattice sum by adding the of
a few hundred shells of rare earth atoms around a nucleus and compare the
numerically calculated results with the experimental results. For CeSn_3, which
is a concentrated heavy electron material, both the ^{119}Sn NMR Knight shift
and positive muon Knight shift are studied. Also, lattice coherence effects by
conduction electron scattering at every rare earth site are included using the
average-T matrix approximation. Also NMR Knight shifts for YbCuAl and the
proposed quadrupolar Kondo alloy Y_{0.8}U_{0.2}Pd_{3} are studied.Comment: 31 pages of RevTex, 22 Postscript figures, submmitted to PRB, some
figures are delete
Engineered Anopheles Immunity to Plasmodium Infection
A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control
- …