12 research outputs found

    Anti-inflammatory therapy with nebulised dornase alfa in patients with severe COVID-19 pneumonia A Randomised Clinical Trial

    Get PDF
    BACKGROUND: SARS-CoV2 infection causes severe, life-threatening pneumonia. Hyper-inflammation, coagulopathy and lymphopenia are associated with pathology and poor outcomes in these patients. Cell-free (cf) DNA is prominent in COVID-19 patients, amplifies inflammation and promotes coagulopathy and immune dysfunction. We hypothesized that cf-DNA clearance by nebulised dornase alfa may reduce inflammation and improve disease outcomes. Here, we evaluated the efficacy of nebulized dornase alfa in patients hospitalised with severe COVID-19 pneumonia. METHODS: In this randomised controlled single-centre phase 2 proof-of-concept trial, we recruited adult patients admitted to hospital that exhibited stable oxygen saturation (≄94%) on supplementary oxygen and a C-reactive protein (CRP) level ≄30mg/L post dexamethasone treatment. Participants were randomized at a 3:1 ratio to receive twice-daily nebulised dornase alfa in addition to best available care (BAC) or BAC alone for seven days or until hospital discharge. A 2:1 ratio of historical controls to treated individuals (HC, 2:1) were included as the primary endpoint comparators. The primary outcome was a reduction in systemic inflammation measured by blood CRP levels over 7 days post-randomisation, or to discharge if sooner. Secondary and exploratory outcomes included time to discharge, time on oxygen, D-dimer levels, lymphocyte counts and levels of circulating cf-DNA. RESULTS: We screened 75 patients and enrolled 39 participants out of which 30 in dornase alfa arm, and 9 in BAC group. We also matched the recruited patients in the treated group (N=30) to historical controls in the BAC group (N=60). For the the primary outcome, 30 patients in the dornase alfa were compared to 69 patients in the BAC group. Dornase alfa treatment reduced CRP by 33% compared to the BAC group at 7-days (P=0.01). The dornase alfa group least squares mean CRP was 23.23 mg/L (95% CI 17.71 to 30.46) and the BAC group 34.82 mg/L (95% CI 28.55 to 42.47). A significant difference was also observed when only randomised participants were compared. Furthermore, compared to the BAC group, the chance of live discharge was increased by 63% in the dornase alfa group (HR 1.63, 95% CI 1.01 to 2.61, P=0.03), lymphocyte counts were improved (least-square mean: 1.08 vs 0.87, P=0.02) and markers of coagulopathy such as D-dimer were diminished (least-square mean: 570.78 vs 1656.96ÎŒg/mL, P=0.004). Moreover, the dornase alfa group exhibited lower circulating cf-DNA levels that correlated with CRP changes over the course of treatment. No differences were recorded in the rates and length of stay in the ICU or the time on oxygen between the groups. Dornase alfa was well-tolerated with no serious adverse events reported. CONCLUSION: In this proof-of-concept study in patients with severe COVID-19 pneumonia, treatment with nebulised dornase alfa resulted in a significant reduction in inflammation, markers of immune pathology and time to discharge. The effectiveness of dornase alfa in patients with acute respiratory infection and inflammation should be investigated further in larger trials

    Profile-QSAR: A Novel meta

    No full text
    Profile-QSAR is a novel 2D predictive model building method for kinases. This “meta-QSAR” method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 “basis-set” kinases. These Bayesian QSARs generate a complete “synthetic” KxC activity matrix of predictions. These synthetic activities are used as “chemical descriptors” to train Partial-Least Squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R2ext = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pair-wise kinase selectivities with a median correlation of R2ext = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a “CkXC” cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R2ext = 0.58 for 24 target modulation assays and R2ext = 0.41 for 18 cell proliferation assays. 2D Profile-QSAR, along with 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q2 values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding “type II” binders, where none of the compounds were predicted to be active at 10 uM. These overall results are particularly striking as chemical novelty was an important criterion in selecting compounds for testing. The method is completely automated. Predicted activities for nearly 4 million internal and commercial compounds across 115 kinase assays and 42 cellular assays are stored in the corporate database. Like computed physical properties, this predicted kinase activity profile can be computed and stored as each compound is registered

    Correction of Chloride Transport and Mislocalization of CFTR Protein by Vardenafil in the Gastrointestinal Tract of Cystic Fibrosis Mice

    Get PDF
    Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15-20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF pharmacotherapy
    corecore